MapReduce编程(一) Intellij Idea配置MapReduce编程环境

时间:2022-04-13 16:44:35

介绍怎样在Intellij Idea中通过创建mavenproject配置MapReduce的编程环境。

一、软件环境

我使用的软件版本号例如以下:

  1. Intellij Idea 2017.1
  2. Maven 3.3.9
  3. Hadoop伪分布式环境( 安装教程可參考这里)

二、创建mavenproject

打开Idea,file->new->Project,左側面板选择mavenproject。(假设仅仅跑MapReduce创建javaproject就可以,不用勾选Creat from archetype,假设想创建webproject或者使用骨架能够勾选)

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境

设置GroupId和ArtifactId。下一步。

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境

设置project存储路径。下一步。

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境

Finish之后,空白project的路径例如以下图所看到的。

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmFwb2F5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="这里写图片描写叙述" title="">

完整的project路径例如以下图所看到的:

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境

三、加入maven依赖

在pom.xml加入依赖。对于hadoop 2.7.3版本号的hadoop,须要的jar包有下面几个:

  • hadoop-common
  • hadoop-hdfs
  • hadoop-mapreduce-client-core
  • hadoop-mapreduce-client-jobclient
  • log4j( 打印日志)

    pom.xml中的依赖例如以下:

    <dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.3</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.3</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.3</version>
</dependency> <dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>

四、配置log4j

src/main/resources目录下新增log4j的配置文件log4j.properties。内容例如以下:

log4j.rootLogger = debug,stdout

### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

五、启动Hadoop

启动Hadoop,执行命令:

cd hadoop-2.7.3/
./sbin/start-all.sh

訪问http://localhost:50070/查看hadoop是否正常启动。

六、执行WordCount(从本地读取文件)

在project根目录下新建input目录,input目录下新增dream.txt,随便写入一些单词:

I have a  dream
a dream

在src/main/java目录下新建包。新增FileUtil.java,创建一个删除output文件的函数,以后就不用手动删除了。内容例如以下:

package com.mrtest.hadoop;

import java.io.File;

/**
* Created by bee on 3/25/17.
*/
public class FileUtil { public static boolean deleteDir(String path) {
File dir = new File(path);
if (dir.exists()) {
for (File f : dir.listFiles()) {
if (f.isDirectory()) {
deleteDir(f.getName());
} else {
f.delete();
}
}
dir.delete();
return true;
} else {
System.out.println("文件(夹)不存在!");
return false;
}
} }

编写WordCount的MapReduce程序WordCount.java,内容例如以下:

package com.mrtest.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer; /**
* Created by bee on 3/25/17.
*/
public class WordCount { public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> { public static final IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
} } public static class IntSumReduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
val = (IntWritable) i.next();
}
this.result.set(sum);
context.write(key, this.result);
}
} public static void main(String[] args)
throws IOException, ClassNotFoundException, InterruptedException { FileUtil.deleteDir("output");
Configuration conf = new Configuration(); String[] otherArgs = new String[]{"input/dream.txt","output"};
if (otherArgs.length != 2) {
System.err.println("Usage:Merge and duplicate removal <in> <out>");
System.exit(2);
} Job job = Job.getInstance(conf, "WordCount");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setReducerClass(WordCount.IntSumReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

执行完成以后。会在project根目录下添加一个output目录。打开output/part-r-00000,内容例如以下:

I   1
a 2
dream 2
have 1

这里在main函数中新增了一个String类型的数组,假设想用main函数的args数组接受參数。在执行时指定输入和输出路径也是能够的。执行WordCount之前,配置Configuration并指定Program arguments就可以。

MapReduce编程(一)  Intellij Idea配置MapReduce编程环境


七、执行WordCount(从HDFS读取文件)

在HDFS上新建目录:

hadoop fs -mkdir /worddir

假设出现Namenode安全模式导致的不能创建目录提示:

mkdir: Cannot create directory /worddir. Name node is in safe mode.

执行下面命令关闭safe mode:

hadoop dfsadmin -safemode leave

上传本地文件:

hadoop fs -put dream.txt /worddir

改动otherArgs參数,指定输入为文件在HDFS上的路径:

String[] otherArgs = new String[]{"hdfs://localhost:9000/worddir/dream.txt","output"};

八、代码下载

代码下载地址:http://download.csdn.net/detail/napoay/9799523