前言
Faster R-CNN是Ross Girshick大神在Fast R-CNN基础上提出的又一个更加快速、更高mAP的用于目标检测的深度学习框架,它对Fast R-CNN进行的最主要的优化就是在Region Proposal阶段,引入了Region Proposal Network (RPN)来进行Region Proposal,同时可以达到和检测网络共享整个图片的卷积网络特征的目标,使得region proposal几乎是cost free的。
关于Faster R-CNN的详细介绍,可以参考我上一篇博客。
Faster R-CNN的代码是开源的,有两个版本:MATLAB版本(faster_rcnn),Python版本(py-faster-rcnn)。
这里我主要使用的是Python版本,Python版本在测试期间会比MATLAB版本慢10%,因为Python layers中的一些操作是在CPU中执行的,但是准确率应该是差不多的。
准备工作1——py-faster-rcnn的编译安装测试
py-faster-rcnn的编译安装
-
克隆Faster R-CNN仓库:
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
一定要加上
--recursive
标志,假设克隆后的文件夹名字叫py-faster-rcnn
-
编译Cython模块:
cd py-faster-rcnn/lib
make -
编译里面的Caffe和pycaffe:
cd py-faster-rcnn/caffe-fast-rcnn
# 按照编译Caffe的方法,进行编译
# 注意Makefile.config的修改,这里不再赘述Caffe的安装
# 编译
make -j8 && make pycaffe -
这里贴上我的
Makefile.config
文件代码,根据你的情况进行相应修改
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS :=mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2016b
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
$ /usr/include/python2.7
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
# INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
# LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
Demo运行
为了检验你的py-faster-rcnn是否成功安装,作者给出了一个demo,可以利用在PASCAL VOC2007数据集上体现训练好的模型,来进行demo的运行,步骤如下:
-
下载预训练好的Faster R-CNN检测器:
cd py-faster-rcnn
./data/scripts/fetch_faster_rcnn_models.sh这条命令会自动下载名为
faster_rcnn_models.tgz
的文件,解压后会创建data/faster_rcnn_models
文件夹,里面会有两个模型:- ZF_faster_rcnn_final.caffemodel:在ZF网络模型下训练所得
- VGG16_faster_rcnn_final.caffemodel:在VGG16网络模型下训练所得。
-
运行demo:
cd py-faster-rcnn
./tools/demo.py -
demo会检测5张图片,这5张图片放在
data/demo/
文件夹下,其中一张的检测结果如下: 至此如果上述过程没有出错,那么py-faster-rcnn算是成功编译安装。
准备工作2——Caltech数据集
由于Faster R-CNN的一部分实验是在PASCAL VOC2007数据集上进行的,所以要想用Faster R-CNN训练我们自己的数据集,首先应该搞清楚PASCAL VOC2007数据集中的目录、图片、标注格式,这样我们才能用自己的数据集制作出类似于PASCAL VOC2007类似的数据集,供Faster R-CNN来进行训练及测试。
获取PASCAL VOC2007数据集
这一部分不是必须的,如果你需要PASCAL VOC2007数据集,可以利用以下命令获取数据集,但我们下载VOC数据集的目的主要是观察他的文件结构和文件内容,以便于我们构建符合要求的自己的数据集。
创建一个专门用来存数据集的地方,假设是
$HOME/data
文件夹。-
下载PASCAL VOC2007的训练、验证和测试数据集:
cd $HOME/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar -
下载完后用以下命令解压:
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar -
会得到如下文件结构:
$HOME/data/VOCdevkit/ # 根文件夹
$HOME/data/VOCdevkit/VOC2007 # VOC2007文件夹
$HOME/data/VOCdevkit/VOC2007/Annotations # 标记文件夹
$HOME/data/VOCdevkit/VOC2007/ImageSets # 供train.txt、test.txt、val.txt等文件存放的文件夹
$HOME/data/VOCdevkit/VOC2007/JPEGImages # 存放图片文件夹
# ... 以及其他的文件夹及子文件夹 ... -
创建快捷方式symlinks来连接到VOC数据集存放的地方:
cd py-faster-rcnn/data
ln -s $HOME/data/VOCdevkit/ VOCdevkit这里需要把
$HOME/data/VOCdevkit/
改为你存放VOCdevkit
文件夹的路径最好使用symlinks来在共享同一份数据集,防止数据集多处拷贝,占用空间。
至此VOC数据集创建完毕。
PASCAL VOC数据集的分析
PASCAL VOC数据集的文件结构,如下:
└── VOCdevkit
└── VOC2007
├── Annotations
├── ImageSets
│ ├── Layout
│ ├── Main
│ └── Segmentation
├── JPEGImages
├── SegmentationClass
└── SegmentationObject
Annotations
该文件夹主要用来存放图片标注(即为ground truth),文件是.xml格式,每张图片都有一个.xml文件与之对应。选取其中一个文件进行如下分析:
<annotation>
<folder>VOC2007</folder> # 必须有,父文件夹的名称
<filename>000005.jpg</filename> # 必须有
<source> # 可有可无
<database>The VOC2007 Database</database>
<annotation>PASCAL VOC2007</annotation>
<image>flickr</image>
<flickrid>325991873</flickrid>
</source>
<owner> # 可有可无
<flickrid>archintent louisville</flickrid>
<name>?</name>
</owner>
<size> # 表示图像大小
<width>500</width>
<height>375</height>
<depth>3</depth>
</size>
<segmented>0</segmented> # 用于分割
<object> # 目标信息,类别,bbox信息,图片中每个目标对应一个<object>标签
<name>chair</name>
<pose>Rear</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>263</xmin>
<ymin>211</ymin>
<xmax>324</xmax>
<ymax>339</ymax>
</bndbox>
</object>
<object>
<name>chair</name>
<pose>Unspecified</pose>
<truncated>1</truncated>
<difficult>1</difficult>
<bndbox>
<xmin>5</xmin>
<ymin>244</ymin>
<xmax>67</xmax>
<ymax>374</ymax>
</bndbox>
</object>
</annotation>
需要注意的,对于我们自己准备的xml标记文件中,每个<object>
标签中的<xmin>
和<ymin>
标签中所对应的坐标值最好大于0,千万不能为负数,否则在训练过程中会报错:AssertionError: assert (boxes[:, 2]) >= boxes[:, 0]).all()
,如下:
所以为了能够顺利训练,一定要仔细检查自己的xml文件中的左上角的坐标是否都为正。我被这个bug卡了一两天,最终把自己标记中所有的错误坐标找出来,才得以顺利训练。
ImageSets
ImageSets文件夹下有三个子文件夹,这里我们只需关注Main文件夹即可。Main文件夹下主要用到的是train.txt、val.txt、test.txt、trainval.txt文件,每个文件中写着供训练、验证、测试所用的文件名的集合,如下:
JPEGImages
JPEGImages文件夹下主要存放着所有的.jpg文件格式的输入图片,不在赘述。
制作VOC类似的Caltech数据集
经过以上对PASCAL VOC数据集文件结构的分析,我们仿照其,创建首先创建类似的文件结构即可:
└── VOCdevkit
└── VOC2007
└── Caltech
├── Annotations
├── ImageSets
│ └── Main
└── JPEGImages
我建议将Caltech文件创建一个symlinks链接到VOCdevkit文件夹之下,因为这样会方便之后训练代码的修改。
- 至于Caltech数据集如何从.seq文件转化为一张张.jpg图片,这里可以参考这里。
- 至于Annotations中一个个.xml标记文件是实验室师兄给我的,上面提到的方法也可以转化,但是并不符合要求。
- 至于ImageSets中的train.txt是根据.xml文件得来的,test.txt是每个seq中每隔30帧取一帧图片得来的。
以上所有和Caltech数据集有关的文件,都可以直接邮件与我联系,我直接发给你,可以省下不少制作数据集的时间。