前言:
最近学习了一些OCR相关的基础知识,包含目标检测和自然语言处理。
正好,在数字中国有相关的比赛:
https://www.datafountain.cn/competitions/334/details/rule
所以想动手实践一下,实际中发现,对于数据标签的处理和整个检测和识别的流程并不熟悉,自己从头去搞还是有很大难度。
幸好,有大佬们之前开源的一些baseline可以参考,有检测的也有识别的,对于真真理解OCR识别是有帮助的。
1)最初baseline AdvancedEAST + CRNN
https://github.com/Tianxiaomo/Cultural_Inheritance-Recognizing_Chinese_Calligraphy_in_Multiple_Scenarios
2)一个新的baseline:EAST + ocr_densenet
https://github.com/DataFountainCode/huawei_code_share
还有最原始的开源的EAST 源码,advanced EAST源码
https://github.com/argman/EAST
https://github.com/huoyijie/AdvancedEAST
CRNN 源码
https://github.com/bgshih/crnn
以及densenet 等,都是很好的学习资源
https://github.com/yinchangchang/ocr_densenet
PART1: EAST
下面,先对EAST 的整个代码进行梳理:
训练样本格式:
img_1.jpg
img_1.txt
img_2.jpg
img_2.txt
(这个可以用第二个baseline中的convert_to_txt.py 实现)
即训练集包含图像以及图像对应的标注信息(4个位置坐标和文字)
python multigpu_train.py --gpu_list=0 --input_size=512 --batch_size_per_gpu=14 --checkpoint_path=/tmp/east_icdar2015_resnet_v1_50_rbox/ \ --text_scale=512 --training_data_path=/data/ocr/icdar2015/ --geometry=RBOX --learning_rate=0.0001 --num_readers=24 \ --pretrained_model_path=/tmp/resnet_v1_50.ckpt
训练完成之后们就可以进行测试
python eval.py --test_data_path=./tmp/test_image/ --gpu_list=0 --checkpoint_path=./tmp/east_icdar2015_resnet_v1_50_rbox/ --output_dir=./tmp/output/
加载已经训练好的模型进行测试
bug解决:
1、lanms 无法完成编译,将Makefile中的Python3 替换为 Python即可make:
I modify the file lanms/Makefile ,change the python3-config to python-config
CXXFLAGS = -I include -std=c++11 -O3 $(shell python3-config --cflags)
LDFLAGS = $(shell python3-config --ldflags)
2、在测试输出时出现
Traceback (most recent call last): File "eval.py", line 194, in <module> tf.app.run() File "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 126, in run _sys.exit(main(argv)) File "eval.py", line 160, in main boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer) File "eval.py", line 98, in detect boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres) File "/work/ocr/EAST/lanms/__init__.py", line 12, in merge_quadrangle_n9 from .adaptor import merge_quadrangle_n9 as nms_impl ImportError: dynamic module does not define module export function (PyInit_adaptor)
nms_locality.nms_locality() is a python implemention, its much slower than c++ code, if just want to test, you can use it, these two methods should provide the same result.
When I change the lanms.merge_quadrangle_n9() in eval.py to nms_locality.nms_locality() There's no error.
C++版本实现调用有问题,直接用Python的实现,这里只是慢一点,结果都是一样的;
PART2: CRNN
参考源码:https://github.com/bai-shang/OCR_TF_CRNN_CTC
训练方法:
1)转换数据,对应图像和标签
For example: image_list.txt
90kDICT32px/1/2/373_coley_14845.jpg coley
90kDICT32px/17/5/176_Nevadans_51437.jpg nevadans
Note: make sure that images can be read from the path you specificed, such as:
path/to/90kDICT32px/1/2/373_coley_14845.jpg
path/to/90kDICT32px/17/5/176_Nevadans_51437.jpg
.......
命令行转换为tfrecord:
python tools/create_crnn_ctc_tfrecord.py \
--image_dir ./data/ --anno_file ./data/train.txt --data_dir ./tfrecords/ \
--validation_split_fraction 0.1
问题:
1)最初bug:TypeError: None has type NoneType, but expected one of: int, long
是因为有未定义的字,也就是不在字典中的字,所以在字典中,字典不完整,单独加未在字典中的编码 "<undefined>": 6736
而且在原代码中:
def _string_to_int(label):
# convert string label to int list by char map
char_map_dict = json.load(open(FLAGS.char_map_json_file, 'r'))
int_list = []
for c in label:
int_list.append(char_map_dict.get(c,6736)) # 增加新的分类6736
2) python2 中会遇到许多编码的问题,建议换成Python3
def _bytes_feature(value): if type(value) is str: value = value.encode('utf-8') if sys.version_info[0] > 2: value = value # convert string object to bytes if not isinstance(value, list): value = [value] return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
代码调试的时候,一步步打印中间结果,分析问题原因:
try:
print (tf.train.Feature(int64_list=tf.train.Int64List(value=value)))
except:
print(value)