安装python-Levenshtein模块
pip install python-Levenshtein
使用python-Levenshtein模块
import Levenshtein
算法说明
1). Levenshtein.hamming(str1, str2)
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应 位置上不同字符的个数。
2). Levenshtein.distance(str1, str2)
计算编辑距离(也称为 Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。
算法实现参考动态规划整理。
3). Levenshtein.ratio(str1, str2)
计算莱文斯坦比。计算公式r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是 类编辑距离
注意 :这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2
这样设计的目的:ratio('a', 'c'),sum=2, 按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。
4). Levenshtein.jaro(s1 , s2 )
计算jaro距离,
其中的 m 为s1 , s2的匹配长度,当某位置的认为匹配当该位置字符相同,或者在不超过
t是调换次数的一半
5.) Levenshtein.jaro_winkler(s 1 , s 2 )
计算 Jaro–Winkler距离:
import Levenshtein 报错:ImportError: No module named Levenshtein
于是去: python-Levenshtein 下载源码进行安装(在 http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-levenshtein其实也有编译好的exe),第一次安装的时候报错:error: Unable to find vcvarsall.bat ,但其实我是装了VS2010的,所以执行如下步骤正常安装:
1.设置环境变量,执行:
SET VS90COMNTOOLS=%VS100COMNTOOLS%
2.再去安装:
setup.py install
就可以正常,编译,安装了。
$ python >>> import Levenshtein >>> help(Levenshtein.ratio) ratio(...) Compute similarity of two strings. ratio(string1, string2) The similarity is a number between 0 and 1, it's usually equal or somewhat higher than difflib.SequenceMatcher.ratio(), becuase it's based on real minimal edit distance. Examples: >>> ratio('Hello world!', 'Holly grail!') 0.58333333333333337 >>> ratio('Brian', 'Jesus') 0.0 >>> help(Levenshtein.distance) distance(...) Compute absolute Levenshtein distance of two strings. distance(string1, string2) Examples (it's hard to spell Levenshtein correctly): >>> distance('Levenshtein', 'Lenvinsten') 4 >>> distance('Levenshtein', 'Levensthein') 2 >>> distance('Levenshtein', 'Levenshten') 1 >>> distance('Levenshtein', 'Levenshtein') 0
- difflib 库
-
>>> import difflib >>> difflib.SequenceMatcher(None, 'abcde', 'abcde').ratio() 1.0 >>> difflib.SequenceMatcher(None, 'abcde', 'zbcde').ratio() 0.80000000000000004 >>> difflib.SequenceMatcher(None, 'abcde', 'zyzzy').ratio() 0.0
-
git clone git://github.com/seatgeek/fuzzywuzzy.git fuzzywuzzy cd fuzzywuzzy python setup.py install >>> from fuzzywuzzy import fuzz >>> from fuzzywuzzy import process Simple Ratio >>> fuzz.ratio("this is a test", "this is a test!") 96 Partial Ratio >>> fuzz.partial_ratio("this is a test", "this is a test!") 100 Token Sort Ratio >>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear") 90 >>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear") 100 Token Set Ratio >>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear") 84 >>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear") 100
gitclone git://github.com/seatgeek/fuzzywuzzy.git fuzzywuzzy cdfuzzywuzzy pythonsetup.pyinstall >>> fromfuzzywuzzyimportfuzz >>> fromfuzzywuzzyimportprocess SimpleRatio >>> fuzz.ratio("this is a test", "this is a test!") 96 PartialRatio >>> fuzz.partial_ratio("this is a test", "this is a test!") 100 TokenSortRatio >>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear") 90 >>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear") 100 TokenSetRatio >>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear") 84 >>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear") 100
import diff match patch textA = "the cat in the red hat" textB = "the feline in the blue hat"
dmp = diff match patch.diff match patch() #create a diff match patch object diffs = dmp.diff main(textA, textB) # All 'diff' jobs start with invoking diff main()
d value = dmp.diff levenshtein(diffs) print d_value
maxLenth = max(len(textA), len(textB)) print float(d_value)/float(maxLenth)
similarity = (1 - float(d_value)/float(maxLenth)) * 100 print similarity
importdiff_match_patch textA = "the cat in the red hat" textB = "the feline in the blue hat" dmp = diff_match_patch.diff_match_patch() #create a diff_match_patch object diffs = dmp.diff_main(textA, textB) # All 'diff' jobs start with invoking diff_main() d_value = dmp.diff_levenshtein(diffs) printd_value maxLenth = max(len(textA), len(textB)) printfloat(d_value)/float(maxLenth) similarity = (1 - float(d_value)/float(maxLenth)) * 100 printsimilarity
title2