POJ 1637 Sightseeing tour(最大流)

时间:2021-05-26 15:16:20

POJ 1637 Sightseeing tour

题目链接

题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路

思路:这题的模型很的巧妙,转一个http://blog.csdn.net/pi9nc/article/details/12223693

先把有向边随意定向了,然后依据每一个点的入度出度之差,能够确定每一个点须要调整的次数,然后中间就是须要调整的边,容量为1,这样去建图最后推断从源点出发的边是否都满流就可以

代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXNODE = 205;
const int MAXEDGE = 10005; typedef int Type;
const Type INF = 0x3f3f3f3f; struct Edge {
int u, v;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow) {
this->u = u;
this->v = v;
this->cap = cap;
this->flow = flow;
}
}; struct Dinic {
int n, m, s, t;
Edge edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
bool vis[MAXNODE];
Type d[MAXNODE];
int cur[MAXNODE];
vector<int> cut; void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
}
void add_Edge(int u, int v, Type cap) {
edges[m] = Edge(u, v, cap, 0);
next[m] = first[u];
first[u] = m++;
edges[m] = Edge(v, u, 0, 0);
next[m] = first[v];
first[v] = m++;
} bool bfs() {
memset(vis, false, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = true;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = first[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
} Type dfs(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} bool Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (bfs()) {
for (int i = 0; i < n; i++)
cur[i] = first[i];
flow += dfs(s, INF);
}
for (int i = first[0]; i + 1; i = next[i])
if (edges[i].flow != edges[i].cap) return false;
return true;
} void MinCut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v])
cut.push_back(i);
}
}
} gao; const int N = 205;
const int M = 1005; int t, n, m, in[N], out[N];
int u[M], v[M], w[M]; bool solve() {
gao.init(n + 2);
for (int i = 1; i <= n; i++) {
if ((in[i] + out[i]) % 2) return false;
if (in[i] > out[i]) gao.add_Edge(i, n + 1, (in[i] - out[i]) / 2);
if (out[i] > in[i]) gao.add_Edge(0, i, (out[i] - in[i]) / 2);
}
for (int i = 0; i < m; i++) {
if (w[i]) continue;
gao.add_Edge(u[i], v[i], 1);
}
return gao.Maxflow(0, n + 1);
} int main() {
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &u[i], &v[i], &w[i]);
in[v[i]]++;
out[u[i]]++;
}
printf("%s\n", solve() ? "possible" : "impossible");
}
return 0;
}