一、相关知识
信号量:一个整数;
大于或等于0时代表可供并发进程使用的资源实体数;
小于0时代表正在等待使用临界区的进程数;
用于互斥的信号量初始值应大于0;
只能通过P、V原语操作而改变;
信号量元素组成:
1、表示信号量元素的值;
2、最后操作信号量元素的进程ID
3、等待信号量元素值+1的进程数;
4、等待信号量元素值为0的进程数;
二、主要函数
1.1 创建信号量
int semget(
key_t key, //标识信号量的关键字,有三种方法:1、使用IPC——PRIVATE让系统产生,
// 2、挑选一个随机数,3、使用ftok从文件路径名中产生
int nSemes, //信号量集中元素个数
int flag //IPC_CREAT;IPC_EXCL 只有在信号量集不存在时创建
)
成功:返回信号量句柄
失败:返回-1
1.2 使用ftok函数根据文件路径名产生一个关键字
key_t ftok(const char *pathname,int proj_id);
路径名称必须有相应权限
1.3 控制信号量
int semctl(
int semid, //信号量集的句柄
int semnum, //信号量集的元素数
int cmd, //命令
/*union senum arg */... //
)
成功:返回相应的值
失败:返回-1
命令详细说明:
cmd: IPC_RMID 删除一个信号量
IPC_EXCL 只有在信号量集不存在时创建
IPC_SET 设置信号量的许可权
SETVAL 设置指定信号量的元素的值为 agc.val
GETVAL 获得一个指定信号量的值
GETPID 获得最后操纵此元素的最后进程ID
GETNCNT 获得等待元素变为1的进程数
GETZCNT 获得等待元素变为0的进程数
union senum 定义如下:
union senum{
int val;
struct semid_ds *buf;
unsigned short * array;
}agc;
其中 semid_ds 定义如下:
struct semid_ds{
struct ipc_pem sem_pem; //operation pemission struct
time_t sem_otime; //last semop()time
time_t sem_ctime; //last time changed by semctl()
struct sem *sembase; //ptr to first semaphore in array
struct sem_queue *sem_pending; //pending operations
struct sem_queue *sem_pending_last; //last pending operations
struct sem_undo *undo; //undo requests on this arrary
unsigned short int sem_nsems; //number of semaphores in set
};
1.4 对信号量 +1 或 -1 或测试是否为0
int semop(
int semid,
struct sembuf *sops, //指向元素操作数组
unsigned short nsops //数组中元素操作的个数
)
结构 sembuf 定义
sembuf{
short int sem_num; //semaphore number
short int sem_op; //semaphore operaion
short int sem_flg //operation flag
};
三、例子:
2.1 服务器
#i nclude <sys/sem.h>
#i nclude <sys/ipc.h>
#define SEGSIZE 1024
#define READTIME 1
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
} arg;
//生成信号量
int sem_creat(key_t key)
{
union semun sem;
int semid;
sem.val = 0;
semid = semget(key,1,IPC_CREAT|0666);
if (-1 == semid){
printf("create semaphore error\n");
exit(-1);
}
semctl(semid,0,SETVAL,sem);
return semid;
}
//删除信号量
void del_sem(int semid)
{
union semun sem;
sem.val = 0;
semctl(semid,0,IPC_RMID,sem);
}
//p
int p(int semid)
{
struct sembuf sops={0,+1,IPC_NOWAIT};
return (semop(semid,&sops,1));
}
//v
int v(int semid)
{
struct sembuf sops={0,-1,IPC_NOWAIT};
return (semop(semid,&sops,1));
}
int main()
{
key_t key;
int shmid,semid;
char *shm;
char msg[7] = "-data-";
char i;
struct semid_ds buf;
key = ftok("/",0);
shmid = shmget(key,SEGSIZE,IPC_CREAT|0604);
if (-1 == shmid){
printf(" create shared memory error\n");
return -1;
}
shm = (char *)shmat(shmid,0,0);
if (-1 == (int)shm){
printf(" attach shared memory error\n");
return -1;
}
semid = sem_creat(key);
for (i = 0;i <= 3;i++){
sleep(1);
p(semid);
sleep(READTIME);
msg[5] = '0' + i;
memcpy(shm,msg,sizeof(msg));
sleep(58);
v(semid);
}
shmdt(shm);
shmctl(shmid,IPC_RMID,&buf);
del_sem(semid);
return 0;
//gcc -o shm shm.c -g
}
2.2 客户端
#i nclude <sys/sem.h>
#i nclude <time.h>
#i nclude <sys/ipc.h>
#define SEGSIZE 1024
#define READTIME 1
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
} arg;
// 打印程序执行时间
void out_time(void)
{
static long start = 0;
time_t tm;
if (0 == start){
tm = time(NULL);
start = (long)tm;
printf(" now start ...\n");
}
printf(" second: %ld \n",(long)(time(NULL)) - start);
}
//创建信号量
int new_sem(key_t key)
{
union semun sem;
int semid;
sem.val = 0;
semid = semget(key,0,0);
if (-1 == semid){
printf("create semaphore error\n");
exit(-1);
}
return semid;
}
//等待信号量变成0
void wait_v(int semid)
{
struct sembuf sops={0,0,0};
semop(semid,&sops,1);
}
int main(void)
{
key_t key;
int shmid,semid;
char *shm;
char msg[100];
char i;
key = ftok("/",0);
shmid = shmget(key,SEGSIZE,0);
if(-1 == shmid){
printf(" create shared memory error\n");
return -1;
}
shm = (char *)shmat(shmid,0,0);
if (-1 == (int)shm){
printf(" attach shared memory error\n");
return -1;
}
semid = new_sem(key);
for (i = 0;i < 3;i ++){
sleep(2);
wait_v(semid);
printf("Message geted is: %s \n",shm + 1);
out_time();
}
shmdt(shm);
return 0;
// gcc -o shmc shmC.c -g
}
另一个例子:
题目是:写一个程序,该程序创建两个进程,分别打印"this is the child process"和"father say hello to child",要求交替打印,输出成"this father is say the hello child to process child",每打印一个单词进程阻塞一段时间。将输出打印到当前目录下的tmp文件中。
答:
- #include <stdio.h>
- #include <stdlib.h>
- #include <sys/types.h>
- #include <sys/ipc.h>
- #include <sys/sem.h>
- #include <sys/stat.h>
- #include <fcntl.h>
- union semun
- {
- int val;
- struct semid_ds *buf;
- unsigned short int *array;
- struct seminfo *__buf;
- };
- int main(void)
- {
- char* buf_child[]={"this", "is", "the", "child", "process"};
- char* buf_father[]={"father", "say", "hello", "to", "child"};
- int i = 0, semid, fd;
- pid_t pid;
- struct sembuf sb; //信号量操作
- union semun sem;
- semid = semget(1000, 2, 0666 | IPC_CREAT); //申请信号量组,包含2个信号量
- sem.val = 0;
- semctl(semid, 0, SETVAL, sem); //初始化0号信号量为0
- sem.val = 1;
- semctl(semid, 1, SETVAL, sem); //初始化1号信号量为1
- fd=open("tmp",O_CREAT|O_TRUNC|O_WRONLY,0666);
- pid = fork();
- switch (pid) {
- case -1:
- perror("fork fail");
- break;
- case 0: /* child consume */
- srand((unsigned int)getpid());
- while (i < 5) {
- sb.sem_num = 1; //将1号信号量
- sb.sem_op = -1; //减1
- sb.sem_flg = sb.sem_flg & ~IPC_NOWAIT;
- semop(semid, &sb, 1);
- write(fd,buf_child[i], strlen(buf_child[i]));
- sleep(rand());
- write(fd,&" ", 1);
- i++;
- sb.sem_num = 0; //将0号信号量
- sb.sem_op = 1; //加1
- sb.sem_flg = sb.sem_flg & ~IPC_NOWAIT;
- semop(semid, &sb, 1); //操作信号量
- }
- break;
- default:/* parent production */
- srand((unsigned int)getpid());
- while (i < 5) {
- sb.sem_num = 0; //将0号信号量
- sb.sem_op = -1; //减1
- sb.sem_flg = sb.sem_flg & ~IPC_NOWAIT;
- semop(semid, &sb, 1); //操作信号量
- write(fd,buf_father[i], strlen(buf_father[i]));
- sleep(rand());
- write(fd,&" ", 1);
- i++;
- sb.sem_num = 1;
- sb.sem_op = 1;
- sb.sem_flg = sb.sem_flg & ~IPC_NOWAIT;
- semop(semid, &sb, 1);
- }
- break;
- }
- return 0;
- }
posix信号量:
1。POSIX无名信号量 如果你学习过操作系统,那么肯定熟 悉PV操作了.PV操作是原子操作.也就是操作是不可以中断的,在一定的时间内,只能够有一个进程的代码在CPU上面执行.在系统当中,有时候为了顺利的 使用和保护共享资源,大家提出了信号的概念. 假设我们要使用一台打印机,如果在同一时刻有两个进程在向打印机输出,那么最终的结果会是什么呢.为了处理 这种情况,POSIX标准提出了有名信号量和无名信号量的概念,由于Linux只实现了无名信号量,我们在这里就只是介绍无名信号量了. 信号量的使用主 要是用来保护共享资源,使的资源在一个时刻只有一个进程所拥有.为此我们可以使用一个信号灯.当信号灯的值为某个值的时候,就表明此时资源不可以使用.否 则就表>示可以使用. 为了提供效率,系统提供了下面几个函数
POSIX的无名信号量的函数有以下几个:
#include
int sem_init(sem_t *sem,int pshared,unsigned int value);
int sem_destroy(sem_t *sem);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem);
sem_init 创建一个信号灯,并初始化其值为value.pshared决定了信号量能否在几个进程间共享.由于目前Linux还没有实现进程间共享信号灯,所以这个 值只能够取0. sem_destroy是用来删除信号灯的.sem_wait调用将阻塞进程,直到信号灯的值大于0.这个函数返回的时候自动的将信号灯 的值的件一.sem_post和sem_wait相反,是将信号灯的内容加一同时发出信号唤醒等待的进程..sem_trywait和sem_wait相 同,不过不阻塞的,当信号灯的值为0的时候返回EAGAIN,表示以后重试.sem_getvalue得到信号灯的值.
由于Linux不支 持,我们没有办法用源程序解释了.
这几个函数的使用相当简单的.比如我们有一个程序要向一个系统打印机打印两页.我们首先创建一个信号灯,并 使其初始值为1,表示我们有一个资源可用.然后一个进程调用sem_wait由于这个时候信号灯的值为1,所以这个函数返回,打印机开始打印了,同时信号 灯的值为0 了. 如果第二个进程要打印,调用sem_wait时候,由于信号灯的值为0,资源不可用,于是被阻塞了.当第一个进程打印完成以后,调用 sem_post信号灯的值为1了,这个时候系统通知第二个进程,于是第二个进程的sem_wait返回.第二个进程开始打印了.