FallDream dalao找的插值练习题
题目大意:给定n,k,求Σi^k (i=1~n),对1e9+7取模。(n<=10^9,k<=10^6)
思路:令f(n)=Σi^k (i=1~n),则有f(n)-f(n-1)=n^k,说明f(n)的差分是n的k次多项式,则所求f(n)为n的k+1次多项式,利用拉格朗日插值公式,我们暴力计算n=0~k+1时的答案,代入公式,利用预处理的信息加速计算,总复杂度O(klogMOD)。
#include<cstdio>
#define MOD 1000000007
int pw(int x,int y)
{
int r=;
for(;y;y>>=,x=1LL*x*x%MOD)if(y&)r=1LL*r*x%MOD;
return r;
}
#define MK 1000000
int z[MK+];
inline int mod(int a){return a>=MOD?a-MOD:a;}
int main()
{
int n,k,i,ans=,s0=,s1=;
scanf("%d%d",&n,&k);
for(i=;i++<=k;)z[i]=mod(z[i-]+pw(i,k));
if(n<=++k)return printf("%d",z[n]),;
for(i=;i<=k;++i)s0=1LL*s0*(n-i)%MOD;
for(i=;i<=k;++i)s1=1LL*s1*(MOD-i)%MOD;
for(i=;i<=k;++i)
ans=(ans+1LL*z[i]*s0%MOD*pw(n-i,MOD-)%MOD*pw(s1,MOD-))%MOD,
s1=1LL*s1*pw(MOD-k+i,MOD-)%MOD*(i+)%MOD;
printf("%d",ans);
}
附:
拉格朗日插值公式:,
牛顿插值公式: