【Spark Java API】broadcast、accumulator

时间:2021-01-15 15:02:40

转载自:http://www.jianshu.com/p/082ef79c63c1

broadcast


官方文档描述:


  1. Broadcast a read-only variable to the cluster, returning a
  2. [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
  3. The variable will be sent to each cluster only once.

函数原型:


  1. def broadcast[T](value: T): Broadcast[T]

广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。 Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。

源码分析:


  1. def broadcast[T: ClassTag](value: T): Broadcast[T] = {
  2. assertNotStopped()
  3. if (classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass)) {
  4. // This is a warning instead of an exception in order to avoid breaking user programs that
  5. // might have created RDD broadcast variables but not used them:
  6. logWarning("Can not directly broadcast RDDs; instead, call collect() and "
  7. + "broadcast the result (see SPARK-5063)")
  8. }
  9. val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
  10. val callSite = getCallSite
  11. logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
  12. cleaner.foreach(_.registerBroadcastForCleanup(bc))
  13. bc
  14. }

实例:


  1. List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
  2. JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
  3. final Broadcast<List<Integer>> broadcast = javaSparkContext.broadcast(data);
  4. JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {
  5. List<Integer> iList = broadcast.value();
  6. @Override
  7. public Integer call(Integer v1) throws Exception {
  8. Integer isum = 0;
  9. for(Integer i : iList)
  10. isum += i;
  11. return v1 + isum;
  12. }
  13. });
  14. System.out.println(result.collect());

accumulator


官方文档描述:


  1. Create an [[org.apache.spark.Accumulator]] variable of a given type, which tasks can "add"
  2. values to using the `add` method. Only the master can access the accumulator's `value`.

函数原型:


  1. def accumulator[T](initialValue: T, accumulatorParam: AccumulatorParam[T]): Accumulator[T]
  2. def accumulator[T](initialValue: T, name: String, accumulatorParam: AccumulatorParam[T])
  3. : Accumulator[T]

累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和sum。Spark原生地只支持数字类型的累加器,开发者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程(对于Python还不支持) 。
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。

源码分析:


  1. def accumulator[T](initialValue: T, name: String)(implicit param: AccumulatorParam[T])
  2. : Accumulator[T] = {
  3. val acc = new Accumulator(initialValue, param, Some(name))
  4. cleaner.foreach(_.registerAccumulatorForCleanup(acc))
  5. acc
  6. }

实例:


  1. class VectorAccumulatorParam implements AccumulatorParam<Vector> {
  2. @Override
  3. //合并两个累加器的值。
  4. //参数r1是一个累加数据集合
  5. //参数r2是另一个累加数据集合
  6. public Vector addInPlace(Vector r1, Vector r2) {
  7. r1.addAll(r2);
  8. return r1;
  9. }
  10. @Override
  11. //初始值
  12. public Vector zero(Vector initialValue) {
  13. return initialValue;
  14. }
  15. @Override
  16. //添加额外的数据到累加值中
  17. //参数t1是当前累加器的值
  18. //参数t2是被添加到累加器的值
  19. public Vector addAccumulator(Vector t1, Vector t2) {
  20. t1.addAll(t2);
  21. return t1;
  22. }
  23. }
  24. List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
  25. JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
  26. final Accumulator<Integer> accumulator = javaSparkContext.accumulator(0);
  27. Vector initialValue = new Vector();
  28. for(int i=6;i<9;i++)
  29. initialValue.add(i);
  30. //自定义累加器
  31. final Accumulator accumulator1 = javaSparkContext.accumulator(initialValue,new VectorAccumulatorParam());
  32. JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {
  33. @Override
  34. public Integer call(Integer v1) throws Exception {
  35. accumulator.add(1);
  36. Vector term = new Vector();
  37. term.add(v1);
  38. accumulator1.add(term);
  39. return v1;
  40. }
  41. });
  42. System.out.println(result.collect());
  43. System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator.value());
  44. System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator1.value());