CCIE-MPLS VPN-实验手册(中卷)

时间:2021-08-20 14:57:37

5:MPLS
VPN PE CE OSPF
实验1

5.1
实验拓扑

CCIE-MPLS VPN-实验手册(中卷)

CCIE-MPLS VPN-实验手册(中卷)

5.2
实验需求

a. R1 R2 R3
组成P-NETWORK,底层协议采用EIGRP

b. R1 R2 R3
直连链路启用LDP,形成LDP

邻接关系

c. R1 R3
建立位于BGP AS 13
内MP-BGP IBGP
对等体关系

d. R4 R5
隶属于站点R13
中的CE
设备,要求最终R5
能PING
通所有R4 loopback
网络

5.2
实验步骤

步骤1:基础配置

例如: R1 R2 R3
的直连接口IP地址

R1 R2 R3
的底层路由协议EIGRP的配置

R1 R2 R3
启用MPLS,注意MPLS

的相关参数设置

R1
与R3
建立MP-BGP IBGP
对等体关系

在R1 R3
上创建对应的VRF,将接口加入VRF

步骤2:PE

设备上OSPF
的配置及CE
设备上OSPF
的相关配置

R1

Router ospf 1 vrf R13

Router-id 1.1.1.1

Network 31.31.14.1 0.0.0.0 a 0

R3

Router ospf 1 vrf R13

Router-id 3.3.3.3

Network 31.31.35.3 0.0.0.0 a 0

此时管理员完成如上配置后,我们应该在R1
上查看IGP
的VRF
表项,确认R1
学习到了所有OSPF
区域路由及外部路由,并且在此确认这些路由的类型,现象如下:

R1#show ip route vrf R13 ospf

Routing Table: R13

100.0.0.0/24 is subnetted, 1 subnets

O E2   
100.100.100.0
[110/20] via 31.31.14.4, 00:00:05,
Ethernet0/0

4.0.0.0/32 is subnetted, 1 subnets

O      
4.4.4.4 [
110/11] via 31.31.14.4, 00:00:05,
Ethernet0/0

44.0.0.0/32 is subnetted, 1 subnets

O IA   
44.44.44.44 [
110/11] via 31.31.14.4, 00:00:05,
Ethernet0/0

步骤3:完成PE

设备上IGP VRF
与MP-BGP VRF的双向重分发:

R1

Router bgp 13

Address-family ipv4 vrf R13

Redistribute ospf 1 match internal external //默认情况下IGP
VRF

的OSPF

只有区域内路由和区域间路由是可以被重分发进MP-BGP
VRF

的,而外部路由时默认不被重分发

Router ospf 1

Redistribute bgp 13 subnets

R3

Router bgp 13

Address-family ipv4 vrf R13

Redistribute ospf 1

Router ospf 1

Redistribute bgp 13 subnets

此时管理员应该抵达R5,查看R5

上所学习的OSPF
路由,确认MPLS-VPN OSPF
路由类型判断机制原理,现象如下:

R5#show ip route ospf

100.0.0.0/24 is subnetted, 1 subnets

O E2   
100.100.100.0
[110/20] via 31.31.35.3, 00:01:43,
Ethernet0/1

4.0.0.0/32 is subnetted, 1 subnets

O IA   
4.4.4.4
[110/21] via 31.31.35.3, 00:01:43,
Ethernet0/1

44.0.0.0/32 is subnetted, 1 subnets

O IA   
44.44.44.44
[110/21] via 31.31.35.3, 00:01:43,
Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O IA   
31.31.14.0
[110/11] via 31.31.35.3, 00:01:43,
Ethernet0/1

5.4
校验

(1)
确认PE
设备被OSPF
认为上ABR,在R1

上用”show ip ospf”命令,现象如下:

R1#show ip ospf

Routing Process
"ospf 1" with ID 1.1.1.1

Domain ID type 0x0005, value 0.0.0.1

Start time:
00:15:05.288, Time elapsed: 00:14:05.580

Supports only
single TOS(TOS0) routes

Supports opaque
LSA

Supports
Link-local Signaling (LLS)

Supports area
transit capability

 Connected to
MPLS VPN Superbackbone
, VRF R13
//
该输出画面在描述超级骨干区域的存在

 It is an area
border and autonomous system boundary router//
该输出画面描述当前设备为ABR也是ASBR

………………………………………………

(2)
确认当前PE
设备OSPF
的domain id(域ID)

R1#show ip ospf

Routing Process
"ospf 1" with ID 1.1.1.1

  Domain ID type
0x0005, value 0.0.0.1 //
该输出画面描述了当前PE

设备的DOMAIN ID

类型与值,我们可以确认这个DOMAIN-ID


和PROCESS-ID
(进程号)

是同一个值

……………………

(4)

在R1 PE
设备上确认来自C-NETWORK OSPF
路由的MP-BGP
拓展团体属性,现象如下:

R1#show ip bgp vpnv4 all 4.4.4.4 //查看MP-BGP
VRF

转发表中特定目标网络的详细信息

BGP routing table entry for 1:3:4.4.4.4/32, version
6

Paths: (1 available, best #1, table R13)

Advertised to
update-groups:

1

Local

31.31.14.4 from 0.0.0.0 (1.1.1.1)

Origin incomplete, metric 11, localpref 100, weight 32768, valid,
sourced, best

Extended Community: RT:1:3 OSPF DOMAIN
ID:0x0005:0x000000010200

OSPF RT:0.0.0.0:2:0 OSPF ROUTER ID:1.1.1.1:0

mpls labels in/out 104/nolabel

RT 1:3
字段含义:这里输出的上VRF
的RT

OSPF DOMAIN ID:0x0005:
字段含义:OSPF domain-id
类型上0x0005,值为0x00000001(此值为进程号),0200默认添加值

OSPF RT:0.0.0.0:2:0
字段含义:RT
实际上上0x0306
被系统转换为RT,但和VRF

无关

0.0.0.0

代表区域0

2
代表LSA 2

0
代表选项

R1#show ip bgp vpnv4 all 44.44.44.44

BGP routing table entry for 1:3:44.44.44.44/32, version
8

Paths: (1 available, best #1, table R13)

Advertised to
update-groups:

1

Local

31.31.14.4 from 0.0.0.0 (1.1.1.1)

Origin incomplete, metric 11, localpref 100, weight 32768, valid,
sourced, best

Extended Community: RT:1:3 OSPF DOMAIN
ID:0x0005:0x000000010200

 OSPF
RT:0.0.0.0:3:0
OSPF ROUTER ID:1.1.1.1:0

mpls labels in/out 105/nolabel

R1#show ip bgp vpnv4 all 100.100.100.0

BGP routing table entry for 1:3:100.100.100.0/24, version
9

Paths: (1 available, best #1, table R13)

Advertised to
update-groups:

1

Local

31.31.14.4 from 0.0.0.0 (1.1.1.1)

Origin incomplete, metric 20, localpref 100, weight 32768, valid,
sourced, best

Extended Community: RT:1:3 OSPF DOMAIN
ID:0x0005:0x000000010200

    OSPF
RT:0.0.0.0:5:1
OSPF ROUTER ID:1.1.1.1:0

mpls labels in/out 103/nolabel

6:MPLS
VPN PE CE OSPF Domain-id
实验

6.1
实验拓扑

CCIE-MPLS VPN-实验手册(中卷)

CCIE-MPLS VPN-实验手册(中卷)

6.2
实验需求

a. R1 R2 R3
组成P-NETWORK,底层协议采用EIGRP

b. R1 R2 R3
直连链路启用LDP,形成LDP

邻接关系

c. R1 R3
建立位于BGP AS 13
内MP-BGP IBGP
对等体关系

d. R1
启用基于VRF的OSPF,其进程号为1

R3

启用基于VRF
的OSPF,其进程号为2

e. R5上看到R4
loopback 0对应的网络绝对不可以是外部路由

6.3
实验步骤

步骤1:完成基本配置

例如:P-NETWORK
网络的配置

PE
设备上VRF
的创建

步骤2:完成PE

上的OSPF
的配置

R1

router ospf 1 vrf R13

router-id 1.1.1.1

network 31.31.14.1 0.0.0.0 a 0

R3

router ospf 2 vrf R13

router-id 3.3.3.3

network 31.31.35.3 0.0.0.0 a 0

此时管理员应该注意下R1 R3
上基于VRF的OSPF

的domain-id
值,现象如下:

R1#show ip ospf

Routing Process
"ospf 1" with ID 1.1.1.1

Domain ID type 0x0005, value
0.0.0.1

 

R3#show ip ospf

Routing Process
"ospf 2" with ID 3.3.3.3

Domain ID type 0x0005, value
0.0.0.2

步骤3:完成PE

设备上IGP
与MP-BGP
的双向重分发

R1

router bgp 13

address-family ipv4 vrf R13

redistribute ospf 1

router ospf 1

redistribute bgp 13 subnets

R3

router bgp 13

address-family ipv4 vrf R13

redistribute ospf 2

router ospf 2

redistribute bgp 13 subnets

此时管理员应该到R5上校验所学习到的关于4.4.4.4

的网络信息:

R5#show ip route ospf

4.0.0.0/32 is subnetted, 1 subnets

O E2   
4.4.4.4
[110/11] via 31.31.35.3, 00:00:45,
Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O E2   
31.31.14.0 [
110/1] via 31.31.35.3, 00:00:45,
Ethernet0/1

步骤4:在PE

设备上将OSPF
的domain-id
值统一

R1

router ospf 1

domain-id 0.0.0.1

R3

router ospf 2

domain-id 0.0.0.1

此时管理员应该在PE
设备上利用”show ip ospf”命令校验domain-id

是否修改,现象如下:

R1#show ip ospf

Routing Process
"ospf 1" with ID 1.1.1.1

Domain ID type 0x0005, value
0.0.0.1

R3#show ip ospf

Routing Process
"ospf 2" with ID 3.3.3.3

Domain ID type 0x0005, value
0.0.0.1

6.4
校验

(1)
管理员在R5上确认路由类型从O
E2
变为 O IA

R5#show ip route ospf

4.0.0.0/32 is subnetted, 1 subnets

O IA   
4.4.4.4 [
110/21] via 31.31.35.3, 00:02:15,
Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O IA   
31.31.14.0
[110/11] via 31.31.35.3, 00:02:15,
Ethernet0/1

7:MPLS
VPN PE CE OSPF
虚链路实验

7.1
实验拓扑

CCIE-MPLS VPN-实验手册(中卷)

CCIE-MPLS VPN-实验手册(中卷)

7.2
实验需求

a.      
R1 R2 R3
组成P-NETWORK

b.     
R1 R3
扮演PE
设备,创建VRF,VRF

参数如下:

VRF NAME : PASS

VRF RD  
: 184:184

VRF RT  
: 184:184

c.

按拓扑要求完成OSPF
的配置

7.3
实验步骤

步骤1:完成基本配置

例如:P-NETWORK

PE

C-NETWORK

配置

此时管理员应该注意R1 VRF
路由表项,现象如下:

R1#show ip route vrf R13 ospf

Routing Table: R13

4.0.0.0/32 is subnetted, 1 subnets

O      
4.4.4.4
[110/11] via 31.31.14.4, 00:06:03,
Ethernet0/1

R4#show ip route ospf

5.0.0.0/32 is subnetted, 1 subnets

O      
5.5.5.5
[110/11] via 31.31.45.5, 00:05:50,
Ethernet0/0

步骤2:配置虚链路

R1

router ospf 1 vrf R13

area 1 virtual-link 4.4.4.4  作为传输区域,和标示为4.4.4.4的设备建立虚链路,千万不要打错远端设备OSPF
ROUTER-ID

R4

router ospf 1

area 1 virtual-link 1.1.1.1

此时管理员应该注意下R1
上OSPF
的邻接关系状态,现象如下:

R1#show ip ospf neighbor

Neighbor ID    
Pri  
State          
Dead Time  
Address        
Interface

4.4.4.4          
0  
FULL/  -          
-       
31.31.14.4     
OSPF_VL0

4.4.4.4          
1  
FULL/BDR       
00:00:31   
31.31.14.4   
  Ethernet0/1

7.4
校验

(1)
确认R1 VRF
里学习到所连接C-NETWORK
的所有路由

R1#show ip route vrf R13 ospf

Routing Table: R13

4.0.0.0/32 is subnetted, 1 subnets

O      
4.4.4.4 [110/11] via 31.31.14.4, 00:01:37, Ethernet0/1

5.0.0.0/32 is subnetted, 1 subnets

O  
    5.5.5.5

[110/21] via 31.31.14.4, 00:01:37, Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O      
31.31.45.0
[110/20] via 31.31.14.4, 00:01:37,
Ethernet0/1

7.5
思考题

(1)R5的loopback
0网络透过虚链路被R1的VRF

学习后,是OSPF
的什么类型路由?

是区域内路由,代码是O

8:MPLS
VPN Sham-link(伪链路)

实验

8.1
实验拓扑

CCIE-MPLS VPN-实验手册(中卷)

CCIE-MPLS VPN-实验手册(中卷)

8.2
实验需求

a. R1 R2 R3
组成P-Network

b.R1 R3
扮演PE设备,按如下需求完成VRF的创建:

VRF NAME : R13

VRF RD  
: 1:3

VRF RT  
: 1:3

C.
按拓扑要求完成OSPF
的配置,要求R4 R5
最终以OSPF
内部路由的形式学习到对端loopback 0
网络

8.3
实验步骤

步骤1:完成基础配置

例如:P-NETWORK
的配置

PE
上VRF的配置及PE

与CE
间OSPF
的配置

此时管理员应该在R4 R5
上观察路由表,现象如下:

R4#show ip route ospf

5.0.0.0/32 is subnetted, 1 subnets

O IA   
5.5.5.5
[110/21] via 31.31.14.1, 00:09:29,
Ethernet0/0

31.0.0.0/24 is subnetted, 2 subnets

O IA   
31.31.35.0
[110/11] via 31.31.14.1, 00:09:29,
Ethernet0/0

R5#show ip route ospf

4.0.0.0/32 is subnetted, 1 subnets

O IA   
4.4.4.4
[110/21] via 31.31.35.3, 00:09:55,
Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O IA   
31.31.14.0
[110/11] via 31.31.35.3, 00:09:55,
Ethernet0/1

步骤2:在PE

设备上实现伪链路,达到路由还原的目的

R1

int loopback 1

ip vrf for R13

ip add 11.11.11.11 255.255.255.255

exi

router bgp 13

address-family ipv4 vrf R13

network 11.11.11.11 mask 255.255.255.255

exi

router ospf 1 vrf R13

area 0 sham-link 11.11.11.11 33.33.33.33

exi

R3

int loopback 1

ip vrf for R13

ip add 33.33.33.33 255.255.255.255

exi

router bgp 13

address-family ipv4 vrf R13

network 33.33.33.33mask 255.255.255.255

exi

router ospf 1 vrf R13

area 0 sham-link 33.33.33.33 11.11.11.11

8.4

校验

(1)
在R1
上检查MP-BGP VRF
转发表

R1#show ip bgp vpnv4 all

BGP table version is 17, local router ID is
1.1.1.1

Status codes: s suppressed, d damped, h history, * valid,
> best, i - internal,

r RIB-failure, S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network      
   Next
Hop           
Metric LocPrf Weight Path

Route Distinguisher: 1:3 (default for vrf R13)

*> 4.4.4.4/32      
31.31.14.4             
11        
32768 ?

r>i5.5.5.5/32      
3.3.3.3                
11   
100     
0 ?

*> 11.11.11.11/32  
0.0.0.0      
           0        
32768 i

*> 31.31.14.0/24   
0.0.0.0                 
0        
32768 ?

r>i31.31.35.0/24   
3.3.3.3                 
0   
100     
0 ?

*>i33.33.33.33/32  
3.3.3.3                 
0   
100     
0 i

R3#show ip bgp vpnv4 all

BGP table version is 17, local router ID is
3.3.3.3

Status codes: s suppressed, d damped, h history, * valid,
> best, i - internal,

r RIB-failure, S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network         
Next Hop           
Metric LocPrf Weight Path

Route Distinguisher: 1:3 (default for vrf R13)

r>i4.4.4.4/32      
1.1.1.1                
11   
100     
0 ?

*> 5.5.5.5/32      
31.31.35.5             
11        
32768 ?

*>i11.11.11.11/32  
1.1.1.1                 
0   
100     
0 i

r>i31.31.14.0/24   
1.1.1.1                 
0   
100     
0 ?

*> 31.31.35.0/24   
0.0.0.0                 
0        
32768 ?

*> 33.33.33.33/32  
0.0.0.0                 
0        
32768 i

(2)检查R1

与R3的SHAM-LINK

链路状态

R1#show ip ospf sham-links

Sham Link OSPF_SL0 to address 33.33.33.33 is
up

Area 0 source address 11.11.11.11

Run as demand
circuit

DoNotAge LSA
allowed. Cost of using 1 State POINT_TO_POINT,

Timer intervals
configured, Hello 10, Dead 40, Wait 40,

Hello due in 00:00:02

  Adjacency
State FULL (Hello suppressed)

………………………………

(3)校验R1
R3
上是否有SHAM-LINK
邻接关系

R1#show ip ospf neighbor

Neighbor ID    
Pri  
State          
Dead Time  
Address        
Interface

3.3.3.3          
0  
FULL/  -          
-       
33.33.33.33    
OSPF_SL0

4.4.4.4   
          1  
FULL/DR        
00:00:35   
31.31.14.4     
Ethernet0/0

(4)R4
R5
查看路由表,确认O IA
路由被还原为O

R4#show ip route ospf

33.0.0.0/32 is subnetted, 1 subnets

O E2   
33.33.33.33 [110/1] via 31.31.14.1, 00:04:56,
Ethernet0/0

   
5.0.0.0/32 is subnetted, 1 subnets

O      
5.5.5.5 [110/22] via 31.31.14.1, 00:04:56,
Ethernet0/0

11.0.0.0/32 is subnetted, 1 subnets

O E2   
11.11.11.11 [110/1] via 31.31.14.1, 00:04:56,
Ethernet0/0

31.0.0.0/24 is subnetted, 2 subnets

O      
31.31.35.0 [110/21] via 31.31.14.1, 00:04:56,
Ethernet0/0、

R5#

R5#show ip route ospf

33.0.0.0/32 is subnetted, 1 subnets

O E2   
33.33.33.33 [110/1] via 31.31.35.3, 00:05:22,
Ethernet0/1

4.0.0.0/32 is subnetted, 1 subnets

O      
4.4.4.4 [110/22] via 31.31.35.3, 00:05:22,
Ethernet0/1

11.0.0.0/32 is subnetted, 1 subnets

O E2   
11.11.11.11 [110/1] via 31.31.35.3, 00:05:22,
Ethernet0/1

31.0.0.0/24 is subnetted, 2 subnets

O      
31.31.14.0 [110/21] via 31.31.35.3, 00:05:22,
Ethernet0/1

9:MPLS-VPN
SHAM-LINK
疑难解析实验

9.1
实验拓扑

CCIE-MPLS VPN-实验手册(中卷)

CCIE-MPLS VPN-实验手册(中卷)

9.2
实验需求

a. R1 R2 R3
组成P-NETWORK

b.管理员按如下需求完成VRF

的创建:

VRF NAME:VPN-A

VRF RD :100:100

VRF RT :100:100

R1 R3
是PE
设备,R1 E0/1
口加入VRF,R3的E0/0

加入VRF

d.

管理员按拓扑要求完成OSPF
的配置

e.

要求最终R5
与R6
抵达任意OSPF
区域网络首选BACKBONE
链路,backbone
链路出现故障后才选择从backdoor
链路抵达

9.3
实验步骤

步骤1:完成基础配置

例如:P-Network
配置

VRF
的创建

C-Network
配置

此时管理员应该发现R1
是不从R4
学习R5 loopback 0网络

步骤2:完成PE

与CE
上的虚链路

R1

router ospf 1 vrf VPN_A

area 14 virtual-link 4.4.4.4

R4

router ospf 1

area 14 virtual-link 1.1.1.1

此时管理员应该发现R1
从R4
学习R5 LOOPBACK 0
网络,现象如下:

R1#show ip route vrf VPN_A ospf

Routing Table: VPN_A

5.0.0.0/32 is subnetted, 1 subnets

O      
5.5.5.5 [110/21] via 31.31.14.4, 00:00:30,
Ethernet0/1

6.0.0.0/32 is subnetted, 1 subnets

O IA   
6.6.6.6 [110/31] via 31.31.14.4, 00:00:30, Ethernet0/1

31.0.0.0/24 is subnetted, 4 subnets

O IA   
31.31.36.0 [110/40] via 31.31.14.4, 00:00:30,
Ethernet0/1

O      
31.31.45.0 [110/20] via 31.31.14.4, 00:00:30,
Ethernet0/1

O IA   
31.31.56.0 [110/30] via 31.31.14.4, 00:00:30,
Ethernet0/1

此时管理员在R6
上查看R6
如何抵达R5 loopback 0
网络,现象如下:

R6#show ip route | in 5.5.5.5

O IA   
5.5.5.5 [110/11] via 31.31.56.5, 00:05:40, Ethernet0/1

步骤3:在R6的E0/1

口重新设定COST,使得R6

抵达R5的LOOPBACK
0网络选择BACKBONE

路径抵达

R6

int e0/1

ip ospf cost 100

此时管理员再次关注R6
路由表中R5 LOOPBACK 0网络走向

R6#show ip route | in 5.5.5.5

O IA   
5.5.5.5 [110/31] via 31.31.36.3, 00:00:39, Ethernet0/0

此时管理员开始关注R5
上如何抵达R6 LOOPBACK 0
网络

R5#show ip route | in 6.6.6.6

O      
6.6.6.6 [110/11] via 31.31.56.6, 00:01:33, Ethernet0/1

步骤4:为了完成路由还原这里我们必须在R1
R5
上配置TUNNEL
,形成一个AREA 1

R1

interface Tunnel0        
//创建编号为0的TUNNEL

接口

ip vrf
forwarding VPN_A 
//将TUNNEL

接口加入VRF

ip unnumbered
Ethernet0/1 //由于不给新建任何地址,所以只能借用设备现有接口地址

tunnel
source Ethernet0/1 //指定TUNNEL

发送数据时,数据包的新包头中源IP地址

tunnel
destination 31.31.45.5 //指定TUNNEL

发送数据时,数据包的新包头中目的IP地址

tunnel mode gre
ip //指定TUNNEL

的数据封装格式为GRE(通用路由封装)

tunnel vrf VPN_A
//告诉TUNNEL

,TUNNEL
目的地址的可用路由条目存在于VRF VPN_A

ip ospf 1 area 1
//将该TUNNEL

修改为OSPF AREA 1

R5

interface Tunnel0

ip unnumbered
Ethernet0/0

ip ospf 1 area
1

tunnel source
Ethernet0/0

tunnel
destination 31.31.14.1

此时完成如上配置,管理员应该发现R1
上多了一个OSPF
邻接关系是TUNNE了的,现象如下:

R1#show ip ospf neighbor

Neighbor ID    
Pri  
State          
Dead Time  
Address        
Interface

4.4.4.4          
0  
FULL/  -          
-     
  31.31.14.4     
OSPF_VL0

5.5.5.5          
0  
FULL/  -       
00:00:34   
31.31.45.5     
Tunnel0

4.4.4.4          
1  
FULL/DR        
00:00:38   
31.31.14.4     
Ethernet0/1

步骤5:PE

设备配置SHAM-LINK
做路由还原

R1

interface loopback 1

ip vrf forward VPN_A

ip address 11.11.11.11 255.255.255.255

exi

router bgp 13

address-family ipv4 vrf VPN_A

network 11.11.11.11 mask 255.255.255.255

!

router ospf 1 vrf VPN_A

area 1 sham-link 11.11.11.11 33.33.33.33

R3

interface loopback 1

ip vrf forward VPN_A

ip address 33.33.33.33 255.255.255.255

exi

router bgp 13

address-family ipv4 vrf VPN_A

network 33.33.33.33 mask 255.255.255.255

!

router ospf 1 vrf VPN_A

area 1 sham-link 33.33.33.33 11.11.11.11

此时完成如上配置,管理员应该发现R1 R3
多了一个SHAM-LINK邻接关系,现象如下:

R1#show ip ospf neighbor

Neighbor ID    
Pri  
State          
Dead Time  
Address        
Interface

4.4.4.4          
0  
FULL/  -          
-       
31.31.14.4     
OSPF_VL0

3.3.3.3          
0  
FULL/  -          
-       
33.33.33.33    
OSPF_SL1

5.5.5.5          
0  
FULL/  -   
    00:00:35   
31.31.45.5     
Tunnel0

4.4.4.4          
1  
FULL/DR        
00:00:39   
31.31.14.4     
Ethernet0/1

步骤6:修改R5
E0/1
口COST值

interface e0/1

Ip ospf cost 20000

9.4
校验

(1)R5 R6
上校验对端LOOPBACK 0网络路由路径

R5#show ip route | in 6.6.6.6

O      
6.6.6.6 [110/11123] via 31.31.14.1, 00:00:45, Tunnel0

R6#show ip route | in 5.5.5.5

O IA   
5.5.5.5 [110/31] via 31.31.36.3, 00:01:03, Ethernet0/0

9.5思考题

(1)请问R5
R6
是否可以PING
通对端LOOPBACK 0
网络?假设可以通,请问路由路径及标签交换过程是什么?