这是一篇CMU发的神经机器翻译教程论文,很全很详细,适合新手阅读,即使没有什么MT、DNN、RNN的基础知识。
另外它还配套了CMU自己的一个框架DyNet的练习。
全文共9章,从统计语言模型到DNN到RNN到Encoder-Deconder再到注意力模型,中间穿插了许多技巧方法,如SGD、其他梯度方法、Beam-search、梯度消失/爆炸、LSTM、GRU等等,非常全面。链接如下:https://arxiv.org/abs/1703.01619
如果有时间,我会写个学习总结或者直接翻译翻译这篇论文。