JDK的跳表源码分析

时间:2021-07-27 14:56:20

JDK源码中的跳表实现类: ConcurrentSkipListMap和ConcurrentSkipListSet。

其中ConcurrentSkipListSet的实现是基于ConcurrentSkipListMap。因此下面具体分析ConcurrentSkipListMap的实现:

//查找指定Key的前置节点
private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) { if (key == null) throw new NullPointerException(); // don't postpone errors for (;;) { for (Index<K,V> q = head, r = q.right, d;;) { if (r != null) { Node<K,V> n = r.node; K k = n.key; if (n.value == null) { if (!q.unlink(r)) // 如果节点r=q.right为空,则删除该节点r,即把节点q.right指向r.right. break; // restart 然后跳出本次循环,从头节点开始继续循环。 r = q.right; // reread r continue; } if (cpr(cmp, key, k) > 0) {// 通过Key值于当前节点的right节点比较,如果Key值较大,则继续往右比较 q = r; r = r.right; continue; } } if ((d = q.down) == null) // 如果当前节点的down为空,则当前链表为最底层链表,该节点的值<=key,此即为查询结果。 return q.node; q = d; // 如果Key值不比当前节点的right节点大,则继续往下比较 r = d.right; } } } // 根据Key查找对应的节点 private Node<K,V> findNode(Object key) { if (key == null) throw new NullPointerException(); // don't postpone errors Comparator<? super K> cmp = comparator; outer: for (;;) { for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {//从key的前置节点开始查找 Object v; int c; if (n == null) break outer; Node<K,V> f = n.next; if (n != b.next) // inconsistent read 读写不一致,重新开始查找 break; if ((v = n.value) == null) { // n is deleted 下一个节点为null,则删除该节点,重新开始查找 n.helpDelete(b, f); break; } if (b.value == null || v == n) // b is deleted break; if ((c = cpr(cmp, key, n.key)) == 0) //查找到,则返回结果 return n; if (c < 0) break outer; b = n; n = f; } } return null; }

private V doGet(Object key) 方法的实现与findNode一致,只是返回值为Value的复制。

新增一个节点的过程如下:

/**

     * 

     * Main insertion method.  Adds element if not present, or

     * replaces value if present and onlyIfAbsent is false.

     * @param key the key

     * @param value the value that must be associated with key

     * @param onlyIfAbsent if should not insert if already present

     * @return the old value, or null if newly inserted

     * 新增一个节点过程:

     * 1,根据新增的节点key值,寻找其合适的插入位置b;

     * 2,如果存在相等的key值,则根据onlyIfAbsent决定是否更新对应的Value值,然后返回;

     * 3,如果不存在相等的key值,则创建一个新的节点,并插入到合适的位置b,此时操作的是跳表的最底层;

     * 4,根据随机函数,决定是否添加上层节点,如果不需要添加,则直接返回null;

     * 5,如果需要添加上层节点,则获取随机值level;

     * 6,如果随机值level不大于当前最大层数,则创建一个从第一层到第level层的新的节点Index链表,其通过down指针连接,right指针都设置为null;

     * 7,如果随机值level大于当前最大层数,则跳表的最大层数加1,然后创建一个从第一层到新的最大层的新的节点Index链表,其通过down指针连接,right指针都设置

     *    为null;然后从旧的最大层数+1到新的最大层数间新增head节点链表,其通过down指针连接,right指针指向刚新增的对应层的Index节点;

     * 8,从旧的最大层数开始往最底层,把新增的index节点插入到合适的位置,即更新其right指针(完善第6步的操作)。至此,完成新增节点的整个过程。

     */

    private V doPut(K key, V value, boolean onlyIfAbsent) {

        Node<K,V> z;             // added node

        if (key == null)

            throw new NullPointerException();

        Comparator<? super K> cmp = comparator;

        outer: for (;;) {

            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {// 根据Key找到前置节点,然后开始查找

                if (n != null) {

                    Object v; int c;

                    Node<K,V> f = n.next;

                    if (n != b.next)               // inconsistent read

                        break;

                    if ((v = n.value) == null) {   // n is deleted

                        n.helpDelete(b, f);

                        break;

                    }

                    if (b.value == null || v == n) // b is deleted

                        break;

                    if ((c = cpr(cmp, key, n.key)) > 0) { //继续往右查找

                        b = n;

                        n = f;

                        continue;

                    }

                    if (c == 0) {

                        if (onlyIfAbsent || n.casValue(v, value)) {//如果存在key相等的节点,则如果onlyIfAbsent=false,则通过casValue更新Key对应的Value值。如果onlyIfAbsent=true,则不更新Key对应的Value值,然后返回oldValue。

                            @SuppressWarnings("unchecked") V vv = (V)v;

                            return vv;

                        }

                        break; // restart if lost race to replace value

                    }

                    // else c < 0; fall through

                }

                z = new Node<K,V>(key, value, n);  // 没有查找到对应的Key节点,则新增一个节点

                if (!b.casNext(n, z))  // 把新增的节点z设为当前节点的next节点;原子操作,失败则不断的循环操作

                    break;         // restart if lost race to append to b

                break outer;

            }

        }

        int rnd = ThreadLocalRandom.nextSecondarySeed();

        if ((rnd & 0x80000001) == 0) { // test highest and lowest bits   

                                       //8000000001 = 1000 0000 0000 0000 0000 0000 0000 0001 测试最高位和最低位是否为0

            int level = 1, max;

            while (((rnd >>>= 1) & 1) != 0)   //无符号右移1位,   随机获得level值

                ++level;

            Index<K,V> idx = null;

            HeadIndex<K,V> h = head;

            if (level <= (max = h.level)) {

                for (int i = 1; i <= level; ++i)

                    idx = new Index<K,V>(z, idx, null);

            }

            else { // try to grow by one level   使整个跳表的level增长1

                level = max + 1; // hold in array and later pick the one to use

                @SuppressWarnings("unchecked")Index<K,V>[] idxs =

                    (Index<K,V>[])new Index<?,?>[level+1];

                for (int i = 1; i <= level; ++i)

                    idxs[i] = idx = new Index<K,V>(z, idx, null); //包含如下两步操作

                    //idx = new Index<K,V>(z,idx,null);  设置idx值,并设置其down和right值

                    //idxs[i] = idx;                     设置每一层中新增的Index节点,其right值都设为null,down值设置为其下一层的Index节点。

                for (;;) {

                    h = head;

                    int oldLevel = h.level;

                    if (level <= oldLevel) // lost race to add level

                        break;

                    HeadIndex<K,V> newh = h;

                    Node<K,V> oldbase = h.node;

                    for (int j = oldLevel+1; j <= level; ++j)         //设置新增的Head节点,设置其node,down,right和level值

                        newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);

                    if (casHead(h, newh)) {        //更新head值成功,则退出无限循环

                        h = newh;                  //h 为新的跳表的head节点

                        idx = idxs[level = oldLevel];   //新增的层中,包含Head和idxs[max]两个节点,其指向关系已经确定,而oldLevel中,还没有设置idxs[level]的前置节点,因此idx = idxs[level = oldLevel],说明需要从此层开始至最底层,设置好idxs[level]的前置节点,下面的代码splice完成该功能。

                        break;

                    }

                }

            }

            // find insertion points and splice in

            splice: for (int insertionLevel = level;;) {

                int j = h.level;

                for (Index<K,V> q = h, r = q.right, t = idx;;) {

                    if (q == null || t == null)

                        break splice;

                    if (r != null) {

                        Node<K,V> n = r.node;

                        // compare before deletion check avoids needing recheck

                        int c = cpr(cmp, key, n.key);//key 根当前node.key比较

                        if (n.value == null) {

                            if (!q.unlink(r))

                                break;

                            r = q.right;

                            continue;

                        }

                        if (c > 0) {  //继续往右查找

                            q = r;

                            r = r.right;

                            continue;

                        }

                    }

                    if (j == insertionLevel) {

                        if (!q.link(r, t))     // 把节点t插入到q和r之间,t即新增的节点idx[level]

                            break; // restart

                        if (t.node.value == null) {

                            findNode(key);

                            break splice;

                        }

                        if (--insertionLevel == 0)//层数往下,如果已到最底层,则退出,最底层的节点值在之前的代码中已经完成插入。

                            break splice;

                    }

                    if (--j >= insertionLevel && j < level)

                        t = t.down; //t值更新,t即新增的节点idx[level]

                    q = q.down;

                    r = q.right;

                }

            }

        }

        return null;

    }

删除一个节点:

/**

     * Main deletion method. Locates node, nulls value, appends a

     * deletion marker, unlinks predecessor, removes associated index

     * nodes, and possibly reduces head index level.

     *

     * Index nodes are cleared out simply by calling findPredecessor.

     * which unlinks indexes to deleted nodes found along path to key,

     * which will include the indexes to this node.  This is done

     * unconditionally. We can't check beforehand whether there are

     * index nodes because it might be the case that some or all

     * indexes hadn't been inserted yet for this node during initial

     * search for it, and we'd like to ensure lack of garbage

     * retention, so must call to be sure.

     *

     * @param key the key

     * @param value if non-null, the value that must be

     * associated with key

     * @return the node, or null if not found

     */

    final V doRemove(Object key, Object value) {

        if (key == null)

            throw new NullPointerException();

        Comparator<? super K> cmp = comparator;

        outer: for (;;) {

            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {

                Object v; int c;

                if (n == null)

                    break outer;

                Node<K,V> f = n.next;

                if (n != b.next)                    // inconsistent read

                    break;

                if ((v = n.value) == null) {        // n is deleted

                    n.helpDelete(b, f);

                    break;

                }

                if (b.value == null || v == n)      // b is deleted

                    break;

                if ((c = cpr(cmp, key, n.key)) < 0)  

                    break outer;

                if (c > 0) {

                    b = n;

                    n = f;

                    continue;

                }

                if (value != null && !value.equals(v))  //如果value不相等,退出

                    break outer;

                if (!n.casValue(v, null))    //无限循环,直至设置节点的值为null成功,

                    break;

                 //之前已经把当前节点值设为null,之后的删除操作分两步:1,在n和n.next间插入一个删除标记节点marker;

                // 2,设置b.next为f;这是由两个原子操作共同完成,如果都正常完成,则直接返回;如果有其中一步失败,则调用findNode(key)来继续完成删除null节点的操作;

                if (!n.appendMarker(f) || !b.casNext(n, f))   

                    findNode(key);          // retry via findNode

                else { .

                    findPredecessor(key, cmp);      // clean index

                    if (head.right == null)

                        tryReduceLevel(); //最上面三层都无索引节点,则把最上面一层的索引删除。

                }

                @SuppressWarnings("unchecked") V vv = (V)v;

                return vv;

            }

        }

        return null;

    }

         /**

         * 添加一个删除标记节点,设置当前节点的next节点为new Node(f),该新增节点的value值为当前节点f.value=f;

         * Tries to append a deletion marker to this node.

         * @param f the assumed current successor of this node

         * @return true if successful

         */

        boolean appendMarker(Node<K,V> f) {

            return casNext(f, new Node<K,V>(f));

        }

         Node(Node<K,V> next) {

            this.key = null;

            this.value = this;

            this.next = next;

        }

         /**

         * compareAndSet next field

         */

        boolean casNext(Node<K,V> cmp, Node<K,V> val) {

            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);

        }

         /**

         * 继续完成删除节点过程:

         * Helps out a deletion by appending marker or unlinking from

         * predecessor. This is called during traversals when value

         * field seen to be null.

         * @param b predecessor

         * @param f successor

         */

        void helpDelete(Node<K,V> b, Node<K,V> f) {

            /*

             * Rechecking links and then doing only one of the

             * help-out stages per call tends to minimize CAS

             * interference among helping threads.

             */

            if (f == next && this == b.next) {

                if (f == null || f.value != f) // not already marked 判断是否为marker节点(f.value=f)

                    casNext(f, new Node<K,V>(f));

                else

                    b.casNext(this, f.next);

            }

        }

通过源代码具体分析其删除步骤:

1, 删除前,需要删除节点n:
      JDK的跳表源码分析
2,删除时,先设置n.value= null; 无限循环,直至成功为止;
3,添加删除标记节点marker:
JDK的跳表源码分析
marker 节点的key=null, value=f, next=f;
4,删除该节点n以及标记节点marker:
JDK的跳表源码分析
 
其中步骤2,3,4分别由3个CAS原子操作完成。步骤2保证成功,步骤3或者4只要有一个失败,此时的n.value = null, 因此都可以由节点遍历的操作来继续推进删除过程。
为什么删除操作要分为3步,而不是由一个步骤(步骤4)来完成?因为CAS操作只能保证一个变量操作的原子性。