Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Idea 1. Sliding window, since numbers are positive, it means the prefix sum of subarrays is monotonic increasing. We can use either left or right side of window as the base to slide the window.
Time complexity: O(n)
Space complexity: O(1)
Take the left side as base, we need to find the smallest right index such that the sum[left..right] <= s, if the sum is smaller than s, we keep expanding right until the sum <= s, if such right index is found, the window size right - left + 1 is the minimum length of subarray starting at index left.
Note 1. when the termindation for find the right index has two conditions: right < nums.length && sum + nums[right] < s, the for loop terminates could mean just reaching the end of the array, might not mean the subarray sum >= s, hence we need to add extra check.
Note 2: The toal sum of the whole array could be less than k, in this case, such subarray doesn't exist.
class Solution {
public int minSubArrayLen(int s, int[] nums) { int sum = 0;
int minLength = nums.length;
boolean flag = false;
for(int left = 0, right = 0; left < nums.length; ++left) {
for(;right < nums.length && sum + nums[right] < s; ++right) {
sum += nums[right];
} if(right < nums.length && sum + nums[right] >= s) {
flag = true;
minLength = Math.min(minLength, right - left + 1);
} sum -= nums[left];
}
if(flag) {
return minLength;
}
return 0;
}
}
Take the right as base,
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int minLength = nums.length;
boolean flag = false;
int sum = 0;
for(int left = 0, right = 0; right < nums.length; ++right) {
sum += nums[right];
while(sum >= s) {
flag = true;
minLength = Math.min(minLength, right - left + 1);
sum -= nums[left];
++left;
}
}
if(!flag) {
return 0;
}
return minLength;
}
}
Idea 2. Binary search and Cumulative sum for prefix subarray, similar to Subarray Product Less Than K LT713, for each index i, find the smallest right index such that prefix[right] - prefix[i-1] >= s.
class Solution {
private int findIndex(int[] prefix, int left, int right, int s) {
int i = left, j = right;
while(i < j) {
int mid = i + (j - i)/2;
if(prefix[mid] - prefix[left-1] >= s) j = mid;
else i = mid + 1;
}
return i;
} public int minSubArrayLen(int s, int[] nums) {
int[] prefix = new int[nums.length + 1];
for(int i = 1; i < prefix.length; ++i) {
prefix[i] = prefix[i-1] + nums[i-1];
} boolean flag = false;
int minLength = nums.length;
for(int i = 1; i < prefix.length; ++i) {
int smallestIndex = findIndex(prefix, i, prefix.length, s);
if(smallestIndex == prefix.length) {
break;
}
else {
flag = true;
minLength = Math.min(minLength, smallestIndex - i + 1);
}
} if(!flag) {
return 0;
}
return minLength;
}
}