linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

时间:2021-01-15 14:45:12

一,sigaction()

#include <signal.h>
int sigaction(int signum,const struct sigaction *act,struct sigaction *oldact));

sigaction函数用于改变进程接收到特定信号后的行为。该函数的第一个参数为信号的值,可以为除SIGKILL及SIGSTOP外的任何一个特定有效的信号(为这两个信号定义自己的处理函数,将导致信号安装错误)。第二个参数是指向结构sigaction的一个实例的指针,在结构sigaction的实例中,指定了对特定信号的处理,可以为空,进程会以缺省方式对信号处理;第三个参数oldact指向的对象用来保存原来对相应信号的处理,可指定oldact为NULL。如果把第二、第三个参数都设为NULL,那么该函数可用于检查信号的有效性。

第二个参数最为重要,其中包含了对指定信号的处理、信号所传递的信息、信号处理函数执行过程中应屏蔽掉哪些函数等等。

sigaction结构定义如下:

struct sigaction {          union{
__sighandler_t _sa_handler;
void (*_sa_sigaction)(int,struct siginfo *, void *);
}_u
sigset_t sa_mask;
unsigned
long sa_flags;
void (*sa_restorer)(void);
}

其中,sa_restorer,已过时,POSIX不支持它,不应再被使用。

1、联合数据结构中的两个元素_sa_handler以及*_sa_sigaction指定信号关联函数,即用户指定的信号处理函数。除了可以是用户自定义的处理函数外,还可以为SIG_DFL(采用缺省的处理方式),也可以为SIG_IGN(忽略信号)。

2、由_sa_handler指定的处理函数只有一个参数,即信号值,所以信号不能传递除信号值之外的任何信息;由_sa_sigaction是指定的信号处理函数带有三个参数,是为实时信号而设的(当然同样支持非实时信号),它指定一个3参数信号处理函数。第一个参数为信号值,第三个参数没有使用(posix没有规范使用该参数的标准),第二个参数是指向siginfo_t结构的指针,结构中包含信号携带的数据值,参数所指向的结构如下:

typedef struct siginfo_t{ 
int si_signo;//信号编号
int si_errno;//如果为非零值则错误代码与之关联
int si_code;//说明进程如何接收信号以及从何处收到
pid_t si_pid;//适用于SIGCHLD,代表被终止进程的PID
pid_t si_uid;//适用于SIGCHLD,代表被终止进程所拥有进程的UID
int si_status;//适用于SIGCHLD,代表被终止进程的状态
clock_t si_utime;//适用于SIGCHLD,代表被终止进程所消耗的用户时间
clock_t si_stime;//适用于SIGCHLD,代表被终止进程所消耗系统的时间
sigval_t si_value;
int si_int;
void * si_ptr;
void* si_addr;
int si_band;
int si_fd;
};

 

siginfo_t结构中的联合数据成员确保该结构适应所有的信号,比如对于实时信号来说,则实际采用下面的结构形式:

typedef struct {
int si_signo;
int si_errno;
int si_code;
union sigval si_value;
} siginfo

结构的第四个域同样为一个联合数据结构:

union sigval {
int sival_int;
void *sival_ptr;
}

采用联合数据结构,说明siginfo_t结构中的si_value要么持有一个4字节的整数值,要么持有一个指针,这就构成了与信号相关的数据。在信号的处理函数中,包含这样的信号相关数据指针,但没有规定具体如何对这些数据进行操作,操作方法应该由程序开发人员根据具体任务事先约定。

sigval结构体:系统调用sigqueue发送信号时,sigqueue的第三个参数就是sigval联合数据结构,当调用sigqueue时,该数据结构中的数据就将拷贝到信号处理函数的第二个参数中。这样,在发送信号同时,就可以让信号传递一些附加信息。信号可以传递信息对程序开发是非常有意义的。

siginfo_t.si_value与sigqueue(pid_t pid, int sig, const union sigval val)第三个参数关联即:

所以通过siginfo_t.si_value可以获得sigqueue(pid_t pid, int sig, const union sigval val)第三个参数传递过来的数据。

如:siginfo_t.si_value.sival_int或siginfo_t.si_value.sival_ptr

其实siginfo_t.si_int直接与sigval.sival_int关联

siginfo_t.si_ptr直接与sigval.sival_ptr关联,所以也可同这种方式获得sigqueue发送过来的数据。

信号参数的传递过程可图示如下:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

3、sa_mask指定在信号处理程序执行过程中,哪些信号应当被阻塞。缺省情况下当前信号本身被阻塞,防止信号的嵌套发送,除非指定SA_NODEFER或者SA_NOMASK标志位,处理程序执行完后,被阻塞的信号开始执行。

注:请注意sa_mask指定的信号阻塞的前提条件,是在由sigaction()安装信号的处理函数执行过程中由sa_mask指定的信号才被阻塞。

4、sa_flags中包含了许多标志位,包括刚刚提到的SA_NODEFER及SA_NOMASK标志位。另一个比较重要的标志位是SA_SIGINFO,当设定了该标志位时,表示信号附带的参数可以被传递到信号处理函数中,因此,应该为sigaction结构中的sa_sigaction指定处理函数,而不应该为sa_handler指定信号处理函数,否则,设置该标志变得毫无意义。即使为sa_sigaction指定了信号处理函数,如果不设置SA_SIGINFO,信号处理函数同样不能得到信号传递过来的数据,在信号处理函数中对这些信息的访问都将导致段错误(Segmentation fault)。

注:很多文献在阐述该标志位时都认为,如果设置了该标志位,就必须定义三参数信号处理函数。实际不是这样的,验证方法很简单:自己实现一个单一参数信号处理函数,并在程序中设置该标志位,可以察看程序的运行结果。实际上,可以把该标志位看成信号是否传递参数的开关,如果设置该位,则传递参数;否则,不传递参数。

二,sigqueue()

之前学过kill,raise,alarm,abort等功能稍简单的信号发送函数,现在我们学习一种新的功能比较强大的信号发送函数sigqueue.

#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int sig, const union sigval val)

调用成功返回 0;否则,返回 -1。

sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然也支持前32种),支持信号带有参数,与函数sigaction()配合使用。

sigqueue的第一个参数是指定接收信号的进程ID,第二个参数确定即将发送的信号,第三个参数是一个联合数据结构union sigval,指定了信号传递的参数,即通常所说的4字节值。

typedef union sigval {

               int  sival_int;

               void *sival_ptr;

}sigval_t;

sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号,而不能发送信号给一个进程组。如果signo=0,将会执行错误检查,但实际上不发送任何信号,0值信号可用于检查pid的有效性以及当前进程是否有权限向目标进程发送信号。

在调用sigqueue时,sigval_t指定的信息会拷贝到对应sig 注册的3参数信号处理函数的siginfo_t结构中,这样信号处理函数就可以处理这些信息了。由于sigqueue系统调用支持发送带参数信号,所以比kill()系统调用的功能要灵活和强大得多。

三,sigqueue与sigaction应用实例

实例一:利用sigaction安装SIGINT信号

#include <unistd.h>
#include
<sys/stat.h>
#include
<sys/wait.h>
#include
<sys/types.h>
#include
<fcntl.h>

#include
<stdlib.h>
#include
<stdio.h>
#include
<errno.h>
#include
<string.h>
#include
<signal.h>


#define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
}
while(0)

void handler(int sig);

int main(int argc, char *argv[])
{
struct sigaction act;
act.sa_handler
= handler;
sigemptyset(
&act.sa_mask);
act.sa_flags
= 0;
//因为不关心SIGINT上一次的struct sigaction所以,oact为NULL
//与signal(handler,SIGINT)相同
if (sigaction(SIGINT, &act, NULL) < 0)
ERR_EXIT(
"sigaction error\n");

for (;;)
pause();
return 0;
}

void handler(int sig)
{
printf(
"recv a sig=%d\n", sig);
}

结果:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

实例二:利用sigaction实现signal,实际上signal底层实现就是利用sigaction

#include <unistd.h>
#include
<sys/stat.h>
#include
<sys/wait.h>
#include
<sys/types.h>
#include
<fcntl.h>

#include
<stdlib.h>
#include
<stdio.h>
#include
<errno.h>
#include
<string.h>
#include
<signal.h>


#define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
}
while(0)

void handler(int sig);
__sighandler_t my_signal(
int sig, __sighandler_t handler);

int main(int argc, char *argv[])
{
my_signal(SIGINT, handler);
for (;;)
pause();
return 0;
}

__sighandler_t my_signal(
int sig, __sighandler_t handler)
{
struct sigaction act;
struct sigaction oldact;
act.sa_handler
= handler;
sigemptyset(
&act.sa_mask);
act.sa_flags
= 0;

if (sigaction(sig, &act, &oldact) < 0)
return SIG_ERR;

return oldact.sa_handler;
}

void handler(int sig)
{
printf(
"recv a sig=%d\n", sig);
}

结果:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

可知my_signal与系统调用signal具有相同的效果

实例三:验证sigaction.sa_mask效果

#include <unistd.h>
#include
<sys/stat.h>
#include
<sys/wait.h>
#include
<sys/types.h>
#include
<fcntl.h>

#include
<stdlib.h>
#include
<stdio.h>
#include
<errno.h>
#include
<string.h>
#include
<signal.h>


#define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
}
while(0)

void handler(int sig);

int main(int argc, char *argv[])
{
struct sigaction act;
act.sa_handler
= handler;
sigemptyset(
&act.sa_mask);
sigaddset(
&act.sa_mask, SIGQUIT);
act.sa_flags
= 0;

if (sigaction(SIGINT, &act, NULL) < 0)
ERR_EXIT(
"sigaction error");

struct sigaction act2;
act2.sa_handler
= handler;
sigemptyset(
&act2.sa_mask);
act2.sa_flags
= 0;

if (sigaction(SIGQUIT, &act2, NULL) < 0)
ERR_EXIT(
"sigaction error");

for (;;)
pause();
return 0;
}

void handler(int sig)
{
if(sig == SIGINT){

printf(
"recv a SIGINT signal\n");
sleep(
5);
}
if (sig == SIGQUIT)
{
printf(
"recv a SIGQUIT signal\n");
}
}

结果:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

可知,安装信号SIGINT时,将SIGQUIT加入到sa_mask阻塞集中,则当SIGINT信号正在执行处理函数时,SIGQUIT信号将被阻塞,只有当SIGINT信号处理函数执行完后才解除对SIGQUIT信号的阻塞,由于SIGQUIT是不可靠信号,不支持排队,所以只递达一次

示例四:给自身发送int型数据

#include <stdio.h>
#include
<unistd.h>
#include
<signal.h>
#include
<stdlib.h>

void sighandler(int signo, siginfo_t *info,void *ctx);
//给自身传递信息
int main(void)
{

struct sigaction act;
act.sa_sigaction
= sighandler;
sigemptyset(
&act.sa_mask);
act.sa_flags
= SA_SIGINFO;//信息传递开关
if(sigaction(SIGINT,&act,NULL) == -1){
perror(
"sigaction error");
exit(EXIT_FAILURE);
}
sleep(
2);
union sigval mysigval;
mysigval.sival_int
= 100;
if(sigqueue(getpid(),SIGINT,mysigval) == -1){
perror(
"sigqueue error");
exit(EXIT_FAILURE);
}
return 0;
}

void sighandler(int signo, siginfo_t *info,void *ctx)
{
//以下两种方式都能获得sigqueue发来的数据
printf("receive the data from siqueue by info->si_int is %d\n",info->si_int);
printf(
"receive the data from siqueue by info->si_value.sival_int is %d\n",info->si_value.sival_int);

}

结果:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

示例五:进程间传递数据

接收端:

#include <stdio.h>
#include
<unistd.h>
#include
<signal.h>
#include
<stdlib.h>

void sighandler(int signo, siginfo_t *info,void *ctx);
//给自身传递信息
int main(void)
{

struct sigaction act;
act.sa_sigaction
= sighandler;
sigemptyset(
&act.sa_mask);
act.sa_flags
= SA_SIGINFO;//信息传递开关
if(sigaction(SIGINT,&act,NULL) == -1){
perror(
"sigaction error");
exit(EXIT_FAILURE);
}
for(; ;){
printf(
"waiting a SIGINT signal....\n");
pause();
}
return 0;
}

void sighandler(int signo, siginfo_t *info,void *ctx)
{
//以下两种方式都能获得sigqueue发来的数据
printf("receive the data from siqueue by info->si_int is %d\n",info->si_int);
printf(
"receive the data from siqueue by info->si_value.sival_int is %d\n",info->si_value.sival_int);

}

发送端:

#include <stdio.h>
#include
<unistd.h>
#include
<signal.h>
#include
<stdlib.h>

int main(int argc, char **argv)
{
if(argc != 2){
fprintf(stderr,
"usage:%s pid\n",argv[0]);
exit(EXIT_FAILURE);
}
pid_t pid
= atoi(argv[1]);
sleep(
2);
union sigval mysigval;
mysigval.sival_int
= 100;
printf(
"sending SIGINT signal to %d......\n",pid);
if(sigqueue(pid,SIGINT,mysigval) == -1){
perror(
"sigqueue error");
exit(EXIT_FAILURE);
}
return 0;
}

结果:

linux系统编程之信号(六):信号发送函数sigqueue和信号安装函数sigaction

由图可知接收成功