【BZOJ3769】spoj 8549 BST again DP(记忆化搜索?)

时间:2022-02-20 14:32:41

【BZOJ3769】spoj 8549 BST again

Description

求有多少棵大小为n的深度为h的二叉树。(树根深度为0;左右子树有别;答案对1000000007取模)

Input

第一行一个整数T,表示数据组数。
以下T行,每行2个整数n和h。

Output

共T行,每行一个整数表示答案(对1000000007取模)

Sample Input

2
2 1
3 2

Sample Output

2
4

HINT

对于100%的数据,1<=n<=600,0<=h<=600,1<=T<=10

题解:直接列DP方程,设f[i][j]表示有i个节点,深度为j的二叉树个数,然后列出方程用前缀和优化转移即可(注意防重)。

然后光荣TLE了,正解貌似是记忆化搜索?不过懒得改了,卡了卡常数就过了。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int P=1000000007;
int n,m;
int a[15],b[15];
int f[610][610],s[610][610];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void init()
{
register int i,j,k;
f[0][0]=s[0][0]=1;
for(j=1;j<=m;j++) s[0][j]=1;
for(i=1;i<=n;i++) for(j=1;j<=m;j++)
{
if(i>=j) for(k=0;k<i;k++) f[i][j]=(f[i][j]+(ll)f[k][j-1]*s[i-k-1][j-1]+(ll)s[k][j-2]*f[i-k-1][j-1])%P;
s[i][j]=(s[i][j-1]+f[i][j])%P;
}
}
int main()
{
int i,T=rd();
for(i=1;i<=T;i++) a[i]=rd(),b[i]=rd()+1,n=max(n,a[i]),m=max(m,b[i]);
init();
for(i=1;i<=T;i++) printf("%d\n",f[a[i]][b[i]]);
return 0;
}