Splay伸展树学习笔记

时间:2022-01-13 16:20:22

Splay伸展树

有篇Splay入门必看文章 —— CSDN链接

经典引文

空间效率:O(n)
时间效率:O(log n)插入、查找、删除
创造者:Daniel Sleator 和 Robert Tarjan
优点:每次查询会调整树的结构,使被查询频率高的条目更靠近树根。

Tree Rotation

Splay伸展树学习笔记
树的旋转是splay的基础,对于二叉查找树来说,树的旋转不破坏查找树的结构。

Splaying

Splaying是Splay Tree中的基本操作,为了让被查询的条目更接近树根,Splay Tree使用了树的旋转操作,同时保证二叉排序树的性质不变。
Splaying的操作受以下三种因素影响:
  • 节点x是父节点p的左孩子还是右孩子
  • 节点p是不是根节点,如果不是
  • 节点p是父节点g的左孩子还是右孩子
同时有三种基本操作:

Zig Step

Splay伸展树学习笔记


当p为根节点时,进行zip step操作。
当x是p的左孩子时,对x右旋;
当x是p的右孩子时,对x左旋。

Zig-Zig Step

Splay伸展树学习笔记
当p不是根节点,且x和p同为左孩子或右孩子时进行Zig-Zig操作。
当x和p同为左孩子时,依次将p和x右旋;
当x和p同为右孩子时,依次将p和x左旋。

Zig-Zag Step

Splay伸展树学习笔记
当p不是根节点,且x和p不同为左孩子或右孩子时,进行Zig-Zag操作。
当p为左孩子,x为右孩子时,将x左旋后再右旋。
当p为右孩子,x为左孩子时,将x右旋后再左旋。

应用

Splay Tree可以方便的解决一些区间问题,根据不同形状二叉树先序遍历结果不变的特性,可以将区间按顺序建二叉查找树。
每次自下而上的一套splay都可以将x移动到根节点的位置,利用这个特性,可以方便的利用Lazy的思想进行区间操作。
对于每个节点记录size,代表子树中节点的数目,这样就可以很方便地查找区间中的第k小或第k大元素。
对于一段要处理的区间[x, y],首先splay x-1到root,再splay y+1到root的右孩子,这时root的右孩子的左孩子对应子树就是整个区间。
这样,大部分区间问题都可以很方便的解决,操作同样也适用于一个或多个条目的添加或删除,和区间的移动。

自学笔记

今天开始自己动手写Splay。身边的小伙伴大多是用下标和数组来维系各个结点的联系,但是我还是一如既往的喜欢C++的指针(❤ ω ❤)。

结点以一个struct结构体的形式存在。

struct node {
int value;
node *father;
node *son[]; node (int v = , node *f = NULL) {
value = v;
father = f;
son[] = NULL;
son[] = NULL;
}
};

其中,son[0]代表左儿子,son[1]代表右儿子。

用一个函数来判断子节点是父节点的哪个儿子

inline bool son(node *f, node *s) {
return f->son[] == s;
}

返回值就是son[]数组的下标,这个函数很方便。

最关键的是旋转操作,有别于常见的zig,zag旋转,我喜欢用一个函数实现其两者的功能,即rotate(x)代表将x旋转到其父节点的位置上。

inline void rotate(node *t) {
node *f = t->father;
node *g = f->father;
bool a = son(f, t), b = !a;
f->son[a] = t->son[b];
if (t->son[b] != NULL)
t->son[b]->father = f;
t->son[b] = f;
f->father = t;
t->father = g;
if (g != NULL)
g->son[son(g, f)] = t;
else
root = t;
}

函数会自行判断x实在父节点的左儿子上还是右儿子上,并自动左旋或右旋。这里要注意改变祖父结点的儿子指针,以及结点的父亲指针,切忌马虎漏掉。同时还要事先做好特判,放止访问非法地址。这里用指针相较于用下标的一个好处就是,如果你不小心访问了NULL即空指针,也是下标党常用的0下标,指针写法一定会RE,而下标写法可能就不会崩溃,因而不易发现错误,导致一些较为复杂而智障的错误。

然后是核心函数——Splay函数,貌似也有人叫Spaly的样子,然而我并没有考证什么。Splay(x,y)用于将x结点旋转到y结点的某个儿子上。特别地,Splay(x,NIL)代表将x旋转到根节点的位置上。根节点的父亲一般是NIL或0。

inline void spaly(node *t, node *p) {
while (t->father != p) {
node *f = t->father;
node *g = f->father;
if (g == p)
rotate(t);
else {
if (son(g, f) ^ son(f, t))
rotate(t), rotate(t);
else
rotate(f), rotate(t);
}
}
}

这里值得注意的是两种双旋。如果t(该节点),f(父亲节点),g(祖父节点)形成了一条单向的链,即[右→右]或[左→左]这样子,那么就先对父亲结点进行rotate操作,再对该节点进行rotate操作;否则就对该节点连续进行两次rotate操作。据称单旋无神犇,双旋O(logN),这句话我也没有考证,个人表示不想做什么太多的探究,毕竟Splay的复杂度本来就挺玄学的了,而且专门卡单旋Splay的题也没怎么听说过。对了,这个双旋操作和AVL的双旋是不是有那么几分相似啊,虽然还是不太一样的吧,好吧其实也不怎么像╮(╯-╰)╭。

接下来谈谈插入操作。插入操作就和普通的二叉搜索树类似,先找到合适的叶子结点,然后在空着的son[]上新建结点,把值放入。不同的是需要把新建的结点Splay到根节点位置,复杂度需要,不要问为什么。

inline void insert(int val) {
if (root == NULL)
root = new node(val, NULL);
for (node *t = root; t; t = t->son[val >= t->value]) {
if (t->value == val) { spaly(t, NULL); return; }
if (t->son[val >= t->value] == NULL)
t->son[val >= t->value] = new node(val, t);
}
}

注意,这个插入函数实现的是非重集合。

与之对应的就是删除操作,相对的复杂一些。删除一个元素,需要先在树中找到这个结点,然后把这个结点Splay到根节点位置,开始分类讨论。如果这个结点没有左儿子(左子树),直接把右儿子放在根的位置上即可;否则的话就需要想方设法合并左右子树:在左子树种找到最靠右(最大)的结点,把它旋转到根节点的儿子上,此时它一定没有右儿子,因为根节点的左子树中不存在任何一个元素比它更大,那么把根节点的右子树接在这个结点的右儿子上即可。

inline void erase(int val) {
node *t = root;
for ( ; t; ) {
if (t->value == val)
break;
t = t->son[val > t->value];
}
if (t != NULL) {
spaly(t, NULL);
if (t->son[] == NULL) {
root = t->son[];
if (root != NULL)
root->father = NULL;
}
else {
node *p = t->son[];
while (p->son[] != NULL)
p = p->son[];
spaly(p, t); root = p;
root->father = NULL;
p->son[] = t->son[];
if (p->son[] != NULL)
p->son[]->father = p;
}
}
}

相较于insert()确实复杂了不少。

以上就是Splay的框架了,是Splay必不可少的部分,在此基础上可以加入许多新的功能。

例如,手动实现垃圾回收,这样新建结点的常数会小很多,毕竟C++的new是很慢的。

node tree[siz], *stk[siz]; int top;

inline node *newnode(int v, node *f) {
node *ret = stk[--top];
ret->size = ;
ret->value = v;
ret->father = f;
ret->son[] = NULL;
ret->son[] = NULL;
ret->reverse = false;
return ret;
} inline void freenode(node *t) {
stk[top++] = t;
}

有的时候需要我们维护子树大小。

inline int size(node *t) {
return t == NULL ? : t->size;
} inline void update(node *t) {
t->size = ;
t->size += size(t->son[]);
t->size += size(t->son[]);
}

简单,安全。

维护区间翻转的时候需要用到打标记的方式。

inline bool tag(node *t) {
return t == NULL ? false : t->reverse;
} inline void reverse(node *t) {
if (t != NULL)
t->reverse ^= true;
} inline void pushdown(node *t) {
if (tag(t)) {
std::swap(t->son[], t->son[]);
reverse(t->son[]);
reverse(t->son[]);
t->reverse ^= true;
}
}

还有更为简洁的rotate函数。

inline void connect(node *f, node *s, bool k) {
if (f == NULL)
root = s;
else
f->son[k] = s;
if (s != NULL)
s->father = f;
} inline void rotate(node *t) {
node *f = t->father;
node *g = f->father;
bool a = son(f, t), b = !a;
connect(f, t->son[b], a);
connect(g, t, son(g, f));
connect(t, f, b);
update(f);
update(t);
}

@Author: YouSiki