OpenCV依据颜色的车牌定位

时间:2021-12-02 14:26:58


使用颜色属性:

Mat srcImage=imread("image/t10.jpg");Mat srcShowImage;
srcImage.copyTo(srcShowImage);
//imshow("a",srcImage);
int i,j;
int cPointB,cPointG,cPointR;
for(i=1;i<srcImage.rows;i++)
for(j=1;j<srcImage.cols;j++)
{
cPointB=srcImage.at<Vec3b>(i,j)[0];
cPointG=srcImage.at<Vec3b>(i,j)[1];
cPointR=srcImage.at<Vec3b>(i,j)[2];
if(cPointB>80&cPointR<80&cPointG<80) //提取蓝色,将该区域设置为黑色
{
srcImage.at<Vec3b>(i,j)[0]=0;
srcImage.at<Vec3b>(i,j)[1]=0;
srcImage.at<Vec3b>(i,j)[2]=0;
}

else if(cPointB>200&cPointR>200&cPointG>200) //提取白色,将其设置为黑色
{
srcImage.at<Vec3b>(i,j)[0]=0;
srcImage.at<Vec3b>(i,j)[1]=0;
srcImage.at<Vec3b>(i,j)[2]=0;
}

else
{
srcImage.at<Vec3b>(i,j)[0]=255;
srcImage.at<Vec3b>(i,j)[1]=255;
srcImage.at<Vec3b>(i,j)[2]=255;
}

}
cvtColor(srcImage,srcImage, CV_BGR2GRAY);
threshold(srcImage,srcImage,127, 255,CV_THRESH_BINARY);
//使用差分法,去掉不相关的区域。
for(i=1;i<srcImage.rows;i++)
for(j=1;j<srcImage.cols-1;j++)
{
srcImage.at<uchar>(i,j)=srcImage.at<uchar>(i,j+1)-srcImage.at<uchar>(i,j);

}

threshold(srcImage,srcImage,127, 255,CV_THRESH_BINARY_INV);//通过二值化的方式来取反。
//erode(srcImage,srcImage,Mat(5,5,CV_8U),Point(-1,-1),2); //腐蚀
//dilate(src,src,Mat(5,5,CV_8U),Point(-1,-1),2); //膨胀
//morphologyEx(src,src,MORPH_OPEN,Mat(3,3,CV_8U),Point(-1,-1),1); //开运算
// morphologyEx(src,src,MORPH_CLOSE,Mat(3,3,CV_8U),Point(-1,-1),1); //闭运算
erode(srcImage,srcImage,Mat(3,3,CV_8U),Point(-1,-1),5);
threshold(srcImage,srcImage,127,255,CV_THRESH_BINARY_INV);
imshow("a",srcImage);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(srcImage, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
for( int i = 0; i < contours.size(); i++ )
{
//使用边界框的方式
CvRect aRect = boundingRect(contours[i]);
int tmparea=aRect.height*aRect.height;
if (((double)aRect.width/(double)aRect.height>2)&& ((double)aRect.width/(double)aRect.height<6)&& tmparea>=2000&&tmparea<=25000)
{
rectangle(srcShowImage,cvPoint(aRect.x,aRect.y),cvPoint(aRect.x+aRect.width ,aRect.y+aRect.height),color,2);
//cvDrawContours( dst, contours, color, color, -1, 1, 8 );
}
}


imshow("da",srcShowImage);

效果如下:

OpenCV依据颜色的车牌定位


OpenCV依据颜色的车牌定位


颜色可以考虑更细致,或者考虑在其他颜色空间内实现。