BZOJ 1835 基站选址(线段树优化DP)

时间:2022-11-22 12:47:23

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1835

题意:有N个村庄坐落在一条直线上,第 i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村 庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位 置,使得总费用最小。

思路:

BZOJ 1835 基站选址(线段树优化DP)

另外,程序中的n=n+1,m=m+1。因
为每次使用f[n]更新答案的,而f[n]的含义是在n位置建立一个通讯站,但是显然有时候最优值并不是一定要在n建立一个。将n+1之后,m+1,则
m+1个必然建立在n+1,而这一个在我们计算st和ed数组时看出他们是不对前面的有影响的。因此统计f[n+1]才是正确的。

struct Node
{
    int L,R;
    i64 Min,det;

    void set(i64 x)
    {
        det+=x;
        Min+=x;
    }
};

Node a[N<<2];

void pushUp(int t)
{
    if(a[t].L==a[t].R) return;
    a[t].Min=min(a[t*2].Min,a[t*2+1].Min);
}

i64 f[N],ans;

void build(int t,int L,int R)
{
    a[t].L=L;
    a[t].R=R;
    a[t].det=0;
    if(L==R)
    {
        a[t].Min=f[L];
        return;
    }
    int mid=(L+R)>>1;
    build(t*2,L,mid);
    build(t*2+1,mid+1,R);
    pushUp(t);
}

void pushDown(int t)
{
    if(a[t].L==a[t].R) return;
    if(a[t].det)
    {
        a[t*2].set(a[t].det);
        a[t*2+1].set(a[t].det);
        a[t].det=0;
    }
}

void add(int t,int L,int R,i64 x)
{
    if(L>a[t].R||R<a[t].L) return;

    if(L<=a[t].L&&a[t].R<=R)
    {
        a[t].set(x);
        return;
    }

    pushDown(t);
    add(t*2,L,R,x);
    add(t*2+1,L,R,x);
    pushUp(t);
}

i64 query(int t,int L,int R)
{
    if(L>a[t].R||R<a[t].L) return inf;
    if(L<=a[t].L&&a[t].R<=R) return a[t].Min;

    pushDown(t);
    i64 ans=min(query(t*2,L,R),query(t*2+1,L,R));
    pushUp(t);
    return ans;
}

int n,m,d[N],c[N],s[N],w[N];
int st[N],ed[N];
vector<int> V[N]; 

int getL(int x,int pos)
{
    int low=1,high=pos,mid;
    while(low<=high)
    {
        mid=(low+high)>>1;
        if(d[mid]>=x) high=mid-1;
        else low=mid+1;
    }
    if(high>=1&&d[high]>=x) return high;
    return low;
}

int getR(int x,int pos)
{
    int low=pos,high=n,mid;
    while(low<=high)
    {
        mid=(low+high)>>1;
        if(d[mid]>x) high=mid-1;
        else low=mid+1;
    }
    if(low<=n&&d[low]<=x) return low;
    return high;
}

void init()
{
    int i;
    FOR1(i,n)
    {
        st[i]=getL(d[i]-s[i],i);
        ed[i]=getR(d[i]+s[i],i);
        V[ed[i]].pb(i);
    }
}

void DP()
{
    build(1,0,n);
    int i,j,k;
    FOR1(i,n)
    {
        f[i]=query(1,0,i-1)+c[i];
        FOR0(j,SZ(V[i]))
        {
            k=V[i][j];
            add(1,0,st[k]-1,w[k]);
        }
    }
    upMin(ans,f[n]);
}

int main()
{
    RD(n,m);
    int i;
    for(i=2;i<=n;i++) RD(d[i]);
    FOR1(i,n) RD(c[i]);
    FOR1(i,n) RD(s[i]);
    FOR1(i,n) RD(w[i]);
    FOR1(i,n) f[i]=inf;
    init();
    ans=inf; n++; m++;
    FOR1(i,m) DP();
    PR(ans);
}