[LeetCode 题解]: First Missing Positive

时间:2021-12-12 12:16:49

Given an unsorted integer array, find the first missing positive integer.

For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.

Your algorithm should run in O(n) time and uses constant space.

题意: 给定一个无序的序列,找到其中首次缺少的正数。

题目好抽象!!!lz表示这个题意看了老久才看明白!!!

题目有一个前提,如果是一个合法的序列,那么给定的一个长度为N的序列排序之后应该是[1,2,...,N-1,N]。这个前提很重要!!!

可是,现在序列中某些数字可能缺失:

例如长度为4的序列[3,4,-1,1]。 排序之后为[-1,1,3,4]。 那么首次缺失的数字为2.

这样看应该不直观,换个思路: 假设数组下标以1开始,那么将数组按照A[i]=i排列,那么可以得到序列[1,-1,3,4]。这样就能发现在A[2]!=2

-----------------------------------------------------------------------------------------------------------------------------

拿到这个题目思路:

(1)首先如果忽略时间和空间复杂度的限制,能够想到的方法,a. 排序 b.根据排序之后的序列依次查找1,2,..,n 直到第一个缺失的数字。 (易知排序后的查找问题的时间复杂度为O(N))

(2)找到满足时间复杂度的做法: 由于前提长度为N的序列正确排列为[1,2,...,N-1,N]. 所以可以用桶排序,或者基数排序。时间复杂度为O(N). 但是,这些排序方法空间复杂度为O(N)..

(3)如何找到空间复杂度为O(1)的做法呢。

  在组合数学里面有错排的概念,即由[1~N]组成的序列中存在 A[i] != i的情况。这和本题的意思比较接近。

      那么,问题就变成了从乱序排列还原成正序最少需要多少次两两交换。 答案是O(N)。 此处证明省略。(好吧,其实lz也没想明白怎么证明 -。-!)

      以下例子参考csdn一篇帖子: http://blog.csdn.net/famousdt/article/details/7301782

思路:

举个例子来说,    。我们让 i 从1开始判断是否在i是否在该在的位置上。此时i=1不在位置1上,而且位置1上是2。2应该放在位置2上,而位置2上是5。位置5上是1。这就说明1,,5三个数轮换一下,就能将这三个数换到各自应该在的位置。需要换2次。

顺着这个思路想,可以把1,,5看成一个环,,4看成另一个环。那么最后的答案就是 整个数列中不在各自该在位置的数的数量 - 环数。此例子中,就是5-=

所以,一个环中,如果有x个数,那么这个环需要x-1次操作。剩下的重点就是找出所有的环了。

根据以上分析可知,题目思路分为两步:

(1) 在O(N)时间内,将错排还原成正序。

(2) 从头开始查找第一个不符合 A[i]==i 的数字,即为所求结果。

例子:

 A=[   ] n=4, i=1
-------------------------------------------
序列            3
-------------------------------------------
起始:   A[1]=4 swap(A[1],A[4])
-------------------------------------------
              
-------------------------------------------
继续交换  A[1]=3 swap(A[1],A[3])
-------------------------------------------
              
-------------------------------------------
A[]=,不能继续交换 i++.
A[]=, 无需交换, i=i+, i=
A[]=, 无需交换, i=i+, i=
A[]=, 无需交换, i=i+, i=
退出。
最终的序列为  0  2  3  4

PS:在下面的代码中,数组的下标从0开始。

 class Solution {
public:
int firstMissingPositive(int A[], int n) {
int i=;
while(i<n)
{
if(A[i]<= || A[i]>n || A[i] == i+) i++; // 无法继续进行交换
else
{
int target=A[i]-;
if(A[i]!=A[target]) swap(A[i],A[target]);
else i++;
}
}
i=;
while(A[i]==i+) i++;
return i+;
}
};

ok!终于搞定了。。。。

转载请注明出处: http://www.cnblogs.com/double-win/ 谢谢!