凡是差分约束系统的题目
都是转化为d[j]-d[i]<=w[i,j]的形式
然后我们建立边i-->j 边权为w[i,j]
对于这道题,要求d[n]-d[1]尽可能的大
设d[i]为相对差,d[1]=0,我们只要跑1-->n的最短路即可(为什么是最短路呢?实在不明白简单举一个例子即可)
由于这道题边不存在负权,所以我们用dij+heap更合适
const inf=;
type link=^node;
node=record
po,len:longint;
next:link;
end;
point=record
num,loc:longint;
end; var w:array[..] of link;
heap:array[..] of point;
where,d:array[..] of longint;
z,t,s,i,j,n,m,x,y:longint;
p:link; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure swap(var a,b:point);
var c:point;
begin
c:=a;
a:=b;
b:=c;
end; procedure add(x,y,z:longint);
var p:link;
begin
new(p);
p^.po:=y;
p^.len:=z;
p^.next:=w[x];
w[x]:=p;
end; procedure up(i:longint);
var j,x,y:longint;
begin
j:=i shr ;
while j> do
begin
if heap[i].num<heap[j].num then
begin
x:=heap[i].loc;
y:=heap[j].loc;
where[x]:=j;
where[y]:=i;
swap(heap[i],heap[j]);
i:=j;
j:=i shr ;
end
else break;
end;
end; procedure sift(i:longint);
var j,x,y:longint;
begin
j:=i shl ;
while j<=s do
begin
if (j+<=s) and (heap[j].num>heap[j+].num) then inc(j);
if heap[i].num>heap[j].num then
begin
x:=heap[i].loc;
y:=heap[j].loc;
where[x]:=j;
where[y]:=i;
swap(heap[i],heap[j]);
i:=j;
j:=i shl ;
end
else break;
end;
end; procedure dij;
var p:link;
mid,k,y:longint;
begin
p:=w[];
for i:= to t do
d[i]:=inf;
d[]:=;
while p<>nil do
begin
x:=p^.po;
d[x]:=min(d[x],p^.len);
p:=p^.next;
end;
s:=;
for i:= to t do
begin
inc(s);
heap[s].num:=d[i];
heap[s].loc:=i;
where[i]:=s;
up(s);
end; for k:= to t do
begin
mid:=heap[].num;
if s= then break;
if mid=inf then break;
x:=heap[].loc;
y:=heap[s].loc;
where[y]:=; swap(heap[],heap[s]);
dec(s); sift();
p:=w[x];
while p<>nil do
begin
y:=p^.po;
if d[y]>p^.len+mid then
begin
d[y]:=p^.len+mid;
heap[where[y]].num:=d[y];
up(where[y]);
end;
p:=p^.next;
end;
end;
end; begin
readln(t,m);
for i:= to m do
begin
readln(x,y,z);
add(x,y,z);
end;
dij;
writeln(d[t]);
end.