wav音频文件头解析

时间:2022-02-11 16:28:10

wav概述

WAV为微软公司(Microsoft)开发的一种声音文件格式,它符合RIFF(Resource Interchange File Format)文件规范,用于保存Windows平台的音频信息资源,被Windows平台及其应用程序所广泛支持,该格式也支持MSADPCM,CCITT A LAW等多种压缩运算法,支持多种音频数字,取样频率和声道,标准格式化的WAV文件和CD格式一样,也是44.1K的取样频率,16位量化数字,因此在声音文件质量和CD相差无几! WAV打开工具是WINDOWS的媒体播放器 通常使用三个参数来表示声音,量化位数,取样频率和采样点振幅。量化位数分为8位,16位,24位三种,声道有单声道和立体声之分,单声道振幅数据为n*1矩阵点,立体声为n*2矩阵点,取样频率一般有11025Hz(11kHz) ,22050Hz(22kHz)和44100Hz(44kHz) 三种,不过尽管音质出色,但在压缩后的文件体积过大!相对其他音频格式而言是一个缺点,其文件大小的计算方式为:WAV格式文件所占容量(B) = (取样频率 X量化位数X 声道) X 时间 / 8 (字节= 8bit) 每一分钟WAV格式的音频文件的大小为10MB,其大小不随音量大小及清晰度的变化而变化。 支持WAV设计的手机主要为智能手机,如索尼爱立信P910和诺基亚N90以及采用Windows Moblie的多普达等手机还有微软Windows Phone系列手机,而其它一些非智能手机的产品,如果宣传支持WAV格式则多半属于只是支持单声道的。

格式解析

WAVE文件是非常简单的一种RIFF文件,它的格式类型为"WAVE"。RIFF块包含两个子块,这两个子块的ID分别是"fmt"和"data",其中"fmt"子块由结构PCMWAVEFORMAT所组成,其子块的大小就是sizeofof(PCMWAVEFORMAT),数据组成就是PCMWAVEFORMAT结构中的数据。 整个头长度44byte.

标志符(RIFF)

余下所有数据的长度

格式类型("WAVE")

"fmt"

PCMWAVEFORMAT的长度

PCMWAVEFORMAT

"data"

声音数据大小

声音数据


wav头结构体定义

/* RIFF WAVE file struct.
* For details see WAVE file format documentation
* (for example at http://www.wotsit.org).
*/
typedef struct WAV_HEADER_S
{
char riffType[4];//4byte,资源交换文件标志:RIFF
unsigned int riffSize;//4byte,从下个地址到文件结尾的总字节数
char waveType[4];//4byte,wav文件标志:WAVE
char formatType[4];//4byte,波形文件标志:FMT(最后一位空格符)
unsigned intformatSize;//4byte,音频属性(compressionCode,numChannels,sampleRate,bytesPerSecond,blockAlign,bitsPerSample)所占字节数
unsigned shortcompressionCode;//2byte,格式种类(1-线性pcm-WAVE_FORMAT_PCM,WAVEFORMAT_ADPCM)
unsigned short numChannels;//2byte,通道数
unsigned int sampleRate;//4byte,采样率
unsigned int bytesPerSecond;//4byte,传输速率
unsigned short blockAlign;//2byte,数据块的对齐,即DATA数据块长度
unsigned short bitsPerSample;//2byte,采样精度-PCM位宽
char dataType[4];//4byte,数据标志:data
unsigned int dataSize;//4byte,从下个地址到文件结尾的总字节数,即除了wav header以外的pcm data length
}WAV_HEADER;

头解析程序示例

wav.h

#ifndef __WAV_H__
#define __WAV_H__


#define debug(fmt...) do \
{ \
printf("[%s::%d] ", __func__, __LINE__);\
printf(fmt); \
}while(0)

/* RIFF WAVE file struct.
* For details see WAVE file format documentation
* (for example at http://www.wotsit.org).
*/
typedef struct WAV_HEADER_S
{
char riffType[4];//4byte,资源交换文件标志:RIFF
unsigned int riffSize;//4byte,从下个地址到文件结尾的总字节数
char waveType[4];//4byte,wave文件标志:WAVE
char formatType[4];//4byte,波形文件标志:FMT
unsigned int formatSize;//4byte,音频属性(compressionCode,numChannels,sampleRate,bytesPerSecond,blockAlign,bitsPerSample)所占字节数
unsigned shortcompressionCode;//2byte,编码格式(1-线性pcm-WAVE_FORMAT_PCM,WAVEFORMAT_ADPCM)
unsigned short numChannels;//2byte,通道数
unsigned int sampleRate;//4byte,采样率
unsigned int bytesPerSecond;//4byte,传输速率
unsigned short blockAlign;//2byte,数据块的对齐
unsigned short bitsPerSample;//2byte,采样精度
char dataType[4];//4byte,数据标志:data
unsigned int dataSize;//4byte,从下个地址到文件结尾的总字节数,即除了wav header以外的pcm data length
}WAV_HEADER;

typedef struct WAV_INFO_S
{
WAV_HEADER header;
FILE *fp;
unsigned int channelMask;
}WAV_INFO;

#endif

wav.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "wav.h"

/* func: endian judge
* return: 0-big-endian othes-little-endian
*/
int IS_LITTLE_ENDIAN(void)
{
int __dummy = 1;
return ( *( (unsigned char*)(&(__dummy) ) ) );
}

unsigned int readHeader(void *dst, signed int size, signed int nmemb, FILE *fp)
{
unsigned int n, s0, s1, err;
unsigned char tmp, *ptr;

if ((err = fread(dst, size, nmemb, fp)) != nmemb)
{
return err;
}
if (!IS_LITTLE_ENDIAN() && size > 1)
{
//debug("big-endian \n");
ptr = (unsigned char*)dst;
for (n=0; n<nmemb; n++)
{
for (s0=0, s1=size-1; s0 < s1; s0++, s1--)
{
tmp = ptr[s0];
ptr[s0] = ptr[s1];
ptr[s1] = tmp;
}
ptr += size;
}
}
else
{
//debug("little-endian \n");
}

return err;
}

void dumpWavInfo(WAV_INFO wavInfo)
{
debug("compressionCode:%d \n",wavInfo.header.compressionCode);
debug("numChannels:%d \n",wavInfo.header.numChannels);
debug("sampleRate:%d \n",wavInfo.header.sampleRate);
debug("bytesPerSecond:%d \n",wavInfo.header.bytesPerSecond);
debug("blockAlign:%d \n",wavInfo.header.blockAlign);
debug("bitsPerSample:%d \n",wavInfo.header.bitsPerSample);

}

int wavInputOpen(WAV_INFO *pWav, const char *filename)
{
signed int offset;
WAV_INFO *wav = pWav ;

if (wav == NULL)
{
debug("Unable to allocate WAV struct.\n");
goto error;
}
wav->fp = fopen(filename, "rb");
if (wav->fp == NULL)
{
debug("Unable to open wav file. %s\n", filename);
goto error;
}

/* RIFF标志符判断 */
if (fread(&(wav->header.riffType), 1, 4, wav->fp) != 4)
{
debug("couldn't read RIFF_ID\n");
goto error; /* bad error "couldn't read RIFF_ID" */
}
if (strncmp("RIFF", wav->header.riffType, 4))
{
debug("RIFF descriptor not found.\n") ;
goto error;
}
debug("Find RIFF \n");

/* Read RIFF size. Ignored. */
readHeader(&(wav->header.riffSize), 4, 1, wav->fp);
debug("wav->header.riffSize:%d \n",wav->header.riffSize);

/* WAVE标志符判断 */
if (fread(&wav->header.waveType, 1, 4, wav->fp) !=4)
{
debug("couldn't read format\n");
goto error; /* bad error "couldn't read format" */
}
if (strncmp("WAVE", wav->header.waveType, 4))
{
debug("WAVE chunk ID not found.\n") ;
goto error;
}
debug("Find WAVE \n");

/* fmt标志符判断 */
if (fread(&(wav->header.formatType), 1, 4, wav->fp) != 4)
{
debug("couldn't read format_ID\n");
goto error; /* bad error "couldn't read format_ID" */
}
if (strncmp("fmt", wav->header.formatType, 3))
{
debug("fmt chunk format not found.\n") ;
goto error;
}
debug("Find fmt \n");

readHeader(&wav->header.formatSize, 4, 1, wav->fp); // Ignored
debug("wav->header.formatSize:%d \n",wav->header.formatSize);

/* read info */
readHeader(&(wav->header.compressionCode), 2, 1, wav->fp);
readHeader(&(wav->header.numChannels), 2, 1, wav->fp);
readHeader(&(wav->header.sampleRate), 4, 1, wav->fp);
readHeader(&(wav->header.bytesPerSecond), 4, 1, wav->fp);
readHeader(&(wav->header.blockAlign), 2, 1, wav->fp);
readHeader(&(wav->header.bitsPerSample), 2, 1, wav->fp);

offset = wav->header.formatSize - 16;

/* Wav format extensible */
if (wav->header.compressionCode == 0xFFFE)
{
static const unsigned char guidPCM[16] = {
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,
0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71
};
unsigned short extraFormatBytes, validBitsPerSample;
unsigned char guid[16];
signed int i;

/* read extra bytes */
readHeader(&(extraFormatBytes), 2, 1, wav->fp);
offset -= 2;

if (extraFormatBytes >= 22)
{
readHeader(&(validBitsPerSample), 2, 1, wav->fp);
readHeader(&(wav->channelMask), 4, 1, wav->fp);
readHeader(&(guid), 16, 1, wav->fp);

/* check for PCM GUID */
for (i = 0; i < 16; i++) if (guid[i] != guidPCM[i]) break;
if (i == 16) wav->header.compressionCode = 0x01;

offset -= 22;
}
}
debug("wav->header.compressionCode:%d \n",wav->header.compressionCode);

/* Skip rest of fmt header if any. */
for (;offset > 0; offset--)
{
fread(&wav->header.formatSize, 1, 1, wav->fp);
}

#if 1
do
{
/* Read data chunk ID */
if (fread(wav->header.dataType, 1, 4, wav->fp) != 4)
{
debug("Unable to read data chunk ID.\n");
free(wav);
goto error;
}
/* Read chunk length. */
readHeader(&offset, 4, 1, wav->fp);

/* Check for data chunk signature. */
if (strncmp("data", wav->header.dataType, 4) == 0)
{
debug("Find data \n");
wav->header.dataSize = offset;
break;
}

/* Jump over non data chunk. */
for (;offset > 0; offset--)
{
fread(&(wav->header.dataSize), 1, 1, wav->fp);
}
} while (!feof(wav->fp));
debug("wav->header.dataSize:%d \n",wav->header.dataSize);
#endif

/* return success */
return 0;

/* Error path */
error:
if (wav)
{
if (wav->fp)
{
fclose(wav->fp);
wav->fp = NULL;
}
//free(wav);
}
return -1;
}

#if 0
int main(int argc,char **argv)

{
WAV_INFO wavInfo;
char fileName[128];
if(argc<2 || strlen(&argv[1][0])>=sizeof(fileName))
{
debug("argument error !!! \n");
return -1 ;
}
debug("size : %d \n",sizeof(WAV_HEADER));
strcpy(fileName,argv[1]);
wavInputOpen(&wavInfo, fileName);
return 0;
}
#endif

附:FIFF文件知识点

1. 简介RIFF全称为资源互换文件格式ResourcesInterchange FileFormat),RIFF文件是windows环境下大部分多媒体文件遵循的一种文件结构,RIFF文件所包含的数据类型由该文件的扩展名来标识,能以RIFF文件存储的数据包括:音频视频交错格式数据(.AVI) 波形格式数据(.WAV) 位图格式数据(.RDI) MIDI格式数据(.RMI)调色板格式(.PAL)多媒体电影(.RMN)动画光标(.ANI)其它RIFF文件(.BND)2. CHUNKchunk是组成RIFF文件的基本单元,它的基本结构如下:struct chunk{u32 id; /* 块标志 */u32 size; /* 块大小 */u8 dat[size]; /* 块内容 */};id 由4个ASCII字符组成,用以识别块中所包含的数据。如:'RIFF','LIST','fmt','data','WAV','AVI'等等,由于这种文件结构最初是由Microsoft和IBM为PC机所定义,RIFF文件是按照little-endian[2] 字节顺序写入的。size(块大小) 是存储在data域中数据的长度,id与size域的大小则不包括在该值内。dat(块内容) 中所包含的数据是以字(WORD)为单位排列的,如果该数据结构长度是奇数,则在最后添加一个空(NULL)字节。chunk块中有且仅有两种类型块:'RIFF'和'LIST'类型可以包含其他块,而其它块仅能含有数据。'RIFF'和'LIST'类型的chunk结构如下structchunk{u32 id; /* 块标志 */u32 size; /* 块大小 *//*此时的dat = type + restdat */u32 type ; /* 类型 */u8 restdat[size] /* dat中除type4个字节后剩余的数据*/};可以看出,'RIFF'和'LIST'也是chunk,只是它的dat由两部分组成type和restdat。type,由4个ASCII字符组成,代表RIFF文件的类型,如'WAV','AVI ';或者'LIST'块的类型,如avi文件中的列表'hdrl','movi'。restdat,dat中除type4个字节后剩余的数据,包括块内容,包含若干chunk和'LIST'2.1 FOURCC 一个FOURCC(fourcharacter code)是一个占4个字节的数据,一般表示4个ASCII字符。在RIFF文件格式中,FOURCC非常普遍,structchunk 中的id成员,'LIST','RIFF'的type成员,起始标识等信息都是用FOURCC表示的。FOURCC一般是四个字符,如'abcd'这样的形式,也可以三个字符包含一个空格,如'abc'这样的形式。RIFF文件的FileData部分由若干个'LIST'和chunk组成,而'LIST'的ListData又可以由若干个'LIST'和chunk组成,即'LIST'是可以嵌套的。'RIFF',FileType,'LIST',ListType,ChunkID都是FOURCC,即使用4字节的ASIIC字符标识类型。FileSize,ListSize,ChunkSize为little-endian32-bit正整数,表示Type(只有'RIFF','LIST'chunk有Type)+Data一起的大小,注意它是little-endian表示,如:0x00123456,存储地址由低到高,在little-endian系统中的存储表示为0x56341200(字节由低位到高位存储),而在big-endian为0x00123456(字节由高位到低位存储)。32bit整数0x00123456存储地址低--------->;高little-endian(字节由低位到高位存储)56341200big-endian(字节由高位到低位存储)00123456