Marriage Match IV
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3147 Accepted Submission(s): 946
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
struct node
{
int to;
int val;
int next;
}edge[MAXN**],e[MAXN**];
int ind,pre[MAXN],vis[MAXN],dis[MAXN],pre1[MAXN],ind1;
int now[MAXN],S,T;
int n,m;
void add1(int x,int y,int z)
{
e[ind1].to = y;
e[ind1].val = z;
e[ind1].next = pre1[x];
pre1[x] = ind1 ++;
}
void spfa()
{
for(int i = ; i <= n; i++){
dis[i] = INF;
vis[i] = ;
}
vis[T] = ;
dis[T] = ;
queue<int>q;
q.push(T);
while(!q.empty()){
int tp = q.front();
q.pop();
vis[tp] = ;
for(int i = pre1[tp]; i != -; i = e[i].next){
int t = e[i].to;
if(dis[t] > dis[tp] + e[i].val){
dis[t] = dis[tp] + e[i].val;
if(!vis[t]){
vis[t] = ;
q.push(t);
}
}
}
}
}
void add(int x,int y,int z)
{
edge[ind].to = y;
edge[ind].val = z;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
void dfs1(int rt)
{
vis[rt] = ;
if(rt == T)return ;
for(int i = pre1[rt]; i != -; i = e[i].next){
int t = e[i].to;
if(now[rt] + dis[t] + e[i].val == dis[S]){
now[t] = now[rt] + e[i].val;
add(rt,t,);
add(t,rt,);
if(!vis[t]){
dfs1(t);
}
}
}
}
int bfs()
{
memset(vis,-,sizeof(vis));
queue<int>q;
vis[S] = ;
q.push(S);
while(!q.empty()){
int tp = q.front();
q.pop();
for(int i = pre[tp]; i != -; i = edge[i].next){
int t = edge[i].to;
if(vis[t] == - && edge[i].val){
vis[t] = vis[tp] + ;
q.push(t);
}
}
}
if(vis[T] == -)return ;
return ;
}
int dfs(int rt,int low)
{
int used = ;
if(rt == T)return low;
for(int i = pre[rt]; i != - && used < low; i = edge[i].next){
int t = edge[i].to;
if(vis[t] == vis[rt] + && edge[i].val){
int a = dfs(t,min(low-used,edge[i].val));
used += a;
edge[i].val -= a;
edge[i^].val += a;
}
}
if(used == )vis[rt] = -;
return used;
}
int x[MAXN*],y[MAXN*],z[MAXN*];
void Init(int flag)
{
ind1 = ;
memset(pre1,-,sizeof(pre1));
for(int i = ; i <= m; i++){
if(!flag){
add1(y[i],x[i],z[i]);
}
else {
add1(x[i],y[i],z[i]);
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i = ; i <= m; i++){
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
Init();
scanf("%d%d",&S,&T);
spfa();
Init();
ind = ;
memset(now,,sizeof(now));
memset(pre,-,sizeof(pre));
dfs1(S);
int ans = ;
while(bfs()){
while(){
int a = dfs(S,INF);
if(!a)break;
ans += a;
}
}
printf("%d\n",ans);
}
return ;
}