小椛椛的板子们

时间:2022-11-30 11:10:41

 

 

 

 

Updata : 小椛椛的板子们2

 

 

 

实在不愿意再做题了,这几天写写板子。

若想找特定模板,请按Ctrl + F搜索

 

FFT(大家都会的FFT,这个写法跑的贼慢,不过好写易懂,rank1没了sad)

 

#include <cstdio>
#include <iostream>
#include <cmath>
#define Max 3000000
#define rg register
inline void read (int &n)
{
    rg char c = getchar ();
    for (n = 0; !isdigit (c); c = getchar ());
    for (; isdigit (c); n = n * 10 + c - '0', c = getchar ());
}

typedef double flo; const flo PI = acos (-1.0);

struct Vec 
{
    flo x, y; Vec (flo a = 0, flo b = 0) : x (a), y (b) {}
    
    Vec operator * (const Vec &rhs) const
    { return Vec (x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x); }
    
    Vec operator * (const flo &k) const
    { return Vec (x * k, y * k); }
    
    Vec operator + (const Vec &rhs) const
    { return Vec (x + rhs.x, y + rhs.y); }
    
    Vec operator - (const Vec &rhs) const
    { return Vec (x - rhs.x, y - rhs.y); }
    
    Vec &operator /= (const flo &k) 
    { return x /= k, y /= k, *this; }
};

using std :: swap;

Vec a[Max], b[Max];

int N, M, Maxn, rd[Max];

void FFT (Vec *a, int N, int f = 1)
{
    rg int i, j, k;
    for (i = 1; i < N; ++ i)
        if (rd[i] > i) swap (a[i], a[rd[i]]);
    for (k = 1; k < N; k <<= 1)
    {
        Vec wn (cos (PI / k), f * sin (PI / k));
        for (j = 0; j < N; j += k << 1)
        {
            Vec w (1, 0), t;
            for (i = j; i < j + k; ++ i, w = w * wn)
                t = w * a[i + k], a[i + k] = a[i] - t, a[i] = a[i] + t;
        }
    }
    if (f == -1) 
        for (i = 0; i < N; ++ i) a[i] /= N;
}

int main (int argc, char *argv[])
{
    read (N), read (M); rg int i; int x;
    ++ N, ++ M, Maxn = 1 << int (ceil (log2 (N + M)));
    for (i = 0; i < N; ++ i) read (x), a[i].x = x;
    for (i = 0; i < M; ++ i) read (x), b[i].x = x;
    
    for (i = 1; i < Maxn; ++ i)
        rd[i] = rd[i >> 1] >> 1 | (i & 1) * (Maxn >> 1);
    FFT (a, Maxn), FFT (b, Maxn);
    
    for (i = 0; i < Maxn; ++ i) a[i] = a[i] * b[i];
    N = N + M - 2;
    for (FFT (a, Maxn, -1), i = 0; i <= N; ++ i)
        printf ("%d ", int (round (a[i].x)));
    return 0;
}
    

 

 

 

Lucas 卢卡斯

#include <cstdio>
#include <iostream>
#define rg register
inline void read (long long &n)
{
    rg char c = getchar ();
    for (n = 0; !isdigit (c); c = getchar ());
    for (; isdigit (c); n = n * 10 + c - '0', c = getchar ());
}
#define Max 1213231
typedef long long LL; LL fac[Max];
LL Pow (LL x, LL p, LL mo)
{
    LL a = x, res = 1;
    for (; p; p >>= 1, a *= a, a %= mo)
        if (p & 1) res *= a, res %= mo;
    return res % mo;
}
LL C (LL N, LL M, LL p) 
{ return M > N ? 0 : ((fac[N] * Pow (fac[M], p - 2, p)) % p * Pow (fac[N - M], p - 2, p) % p); }
LL Lucas (LL N, LL M, LL P) 
{ return !M ? 1 : (C (N % P, M % P, P) * Lucas (N / P, M / P, P)) % P; }
int main (int argc, char *argv[])
{
    LL T, x, y, p, L; read (T); rg int i;
    for (fac[0] = 1; T; -- T)
    {
        read (x), read (y), read (p);
        for (i = 1; i <= p; ++ i) fac[i] = fac[i - 1] * i, fac[i] %= p;
        printf ("%lld\n", Lucas (x + y, x, p));
    }
    return 0;
}

 

快速排序

虽然说不让用sort,但是我这种懒癌晚期的人怎么可能去手写sort呢?【其实是不会写

觉得过意不去,就写了快读和快输

#include <cstdio>
#include <iostream>
#include <algorithm>
struct io
{
    static const int BUF = 12310330;
    char p[BUF], *s, e[BUF], *t; int a[24];
    io () : s(p), t(e) { fread (s, 1, sizeof p, stdin); }
    ~io () { fwrite (e, 1, t - e, stdout); }
    operator int()
    {
        static int v,j;
        v = 0,j = 1;
        for (v = 0, j = 1; *s < 48; j = *s++ ^ 45);
        do v = v * 10 + *s++ - 48; while (*s > 32);
        return j ? v : -v;
    }
    void print(int v)
    {
        static int *q = a;
        if (!v) *t++ = 48;
        else
        {
            if (v < 0) *t++ = 45, v *= -1;
            for (; v; *q++ = v % 10 + 48, v /= 10);
            for (; q != a; *t++ = *--q);
        }
        *t++ = 32;
    }
} ip;
#define Max 100007
int a[Max]; 
int main (int argc, char *argv[])
{
#define rg register
    int N = ip; rg int i;
    for (i = 1; i <= N; ++ i) a[i] = ip;
    std :: sort (a + 1, a + 1 + N);
    for (i = 1; i <= N; ++ i) ip.print (a[i]);
    return 0;
}

 

负环

递归spfa判负环

 

#include <cstdio>
#include <iostream>
#include <cstring>
#define rg register
struct IO
{
    static const int BUF = 32312312;
    char p[BUF], *s; 
    IO () : s (p) { fread (s, 1, sizeof p, stdin); } 
    operator int ()
    {
        rg int v, j = 1;
        for (v = 0, j = 1; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s > 32);
        return j ? v : -v;
    }
} ip;

#define Max 400007
int N, M; bool is[Max], F; 
int _n[Max << 1], _v[Max << 1], list[Max], EC, _d[Max << 1], dis[Max];
inline void In (int u, int v, int d)
{ _v[++ EC] = v, _n[EC] = list[u], list[u] = EC, _d[EC] = d; }
void Check (int n)
{
    if (F) return ; is[n] = true;
    for (rg int i = list[n], v; i; i = _n[i])
        if (dis[v = _v[i]] > dis[n] + _d[i]) 
        {
            dis[v] = dis[n] + _d[i];
            if (!is[v]) Check (v);
            else { F = true; return ; }
        }
    is[n] = false;
}
int main (int argc, char *argv[])
{
    rg int i, j; int x, y, z; 
    for (int T = ip; T; -- T)
    {
        N = ip, M = ip; F = false;
        for (i = 1; i <= N; ++ i) dis[i] = list[i] = is[i] = false;
        for (i = 1, EC = 0; i <= M; ++ i) 
        {
            x = ip, y = ip, z = ip;
            if (z < 0) In (x, y, z); else In (x, y, z), In (y, x, z);
        }
        for (i = 1; i <= N && !F; Check (i ++));
        puts (F ? "YE5" : "N0");
    }
    return 0;    
}

 Tarjan强连通分量+缩点+拓扑最长路

 

#include <cstdio>
#include <iostream>
#include <stack>
#include <queue>
#define rg register

struct IO 
{
    static const int BUF = 12312123;
    char p[BUF], *s;
    IO () : s (p) { fread (s, 1, sizeof p, stdin); }
    operator int ()
    {
        rg int v = 0, f = true;
        for (; *s < 48; f = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s > 32);
        return f ? v : -v; 
    }
} ip;
int N;
#define Max 10004
int _n[Max * 20], _v[Max * 20], list[Max], EC, key[Max];

inline void In (int u, int v)
{ _v[++ EC] = v, _n[EC] = list[u], list[u] = EC; }

int dfn[Max], low[Max], DC, SC, scc[Max], val[Max]; std :: stack <int> S;
inline void cmin (int &a, int b) { if (b < a) a = b; }
void Tarjan (int n)
{
    dfn[n] = low[n] = ++ DC; S.push (n); rg int v;
    for (rg int i = list[n]; i; i = _n[i])
        if (!dfn[v = _v[i]]) Tarjan (v), cmin (low[n], low[v]);
        else if (!scc[v]) cmin (low[n], dfn[v]);
    if (low[n] == dfn[n]) 
    {
        ++ SC; rg int r;
        for (r = n + 1; r != n; S.pop ())
            scc[r = S.top ()] = SC, val[SC] += key[r];
    }
}

int ev[Max], en[Max], el[Max], dis[Max], ec, in[Max];
inline void ei (int u, int v)
{ ev[++ ec] = v, en[ec] = el[u], el[u] = ec; ++ in[v]; }

int f[Max];
inline void cmax (int &a, int b) { if (b > a) a = b; }
void Topsort ()
{
    rg int i, v; std :: queue <int> Q; int s = 0;
    for (i = 1; i <= SC; ++ i) 
        if (in[i] == 0) Q.push (i), f[i] = val[i], cmax (s, f[i]);
    for (int n; !Q.empty (); Q.pop ())
        for (i = el[n = Q.front ()]; i; i = en[i])
        {
            v = ev[i], cmax (f[v], f[n] + val[v]);
            if ((-- in[v]) == 0) Q.push (v);
            cmax (s, f[v]);
        }        
    printf ("%d", s);
}
int main (int argc, char *argv[])
{
    int M; N = ip, M = ip; int x, y, z; rg int i;
    for (i = 1; i <= N; ++ i) key[i] = ip;
    for (i = 1; i <= M; ++ i) In (ip, ip);
    
    for (i = 1; i <= N; ++ i) if (!dfn[i]) Tarjan (i);
    for (int n = 1; n <= N; ++ n)
        for (i = list[n]; i; i = _n[i])
            if (scc[_v[i]] != scc[n]) ei (scc[n], scc[_v[i]]);
            
    Topsort ();  return 0;
}

 割点(顶)

 

#include <cstdio>
#include <iostream>
#define rg register
struct IO
{
    static const int BUF = 12312332;
    char p[BUF], *s;
    IO () : s (p) { fread (s, 1, sizeof p, stdin); }
    operator int ()
    {
        rg int v = 0, j = 1;
        for (; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s >= 48);
        return j ? v : -v;
    }
    
} ip;
#define Max 2000007
int N, Rt, is[Max];
inline void cmin (int &a, int b) { if (b < a) a = b; }

int _n[Max], _v[Max], list[Max], EC, dfn[Max], low[Max], DC;
inline void In (int u, int v)
{ _v[++ EC] = v, _n[EC] = list[u], list[u] = EC; }

void Dfs (int n)
{
    low[n] = dfn[n] = ++ DC; rg int i, v, r = 0;
    for (i = list[n]; i; i = _n[i])
    {
        v = _v[i];
        if (!dfn[v]) 
        {
            Dfs (v), cmin (low[n], low[v]);
            if (low[v] >= dfn[n] && n != Rt) is[n] = true;
            if (n == Rt) ++ r;
        }
        cmin (low[n], dfn[v]);
    }
    if (r >= 2 && n == Rt) is[Rt] = true;
}
int main (int argc, char *argv[])
{    
    int M, x, y; N = ip, M = ip; rg int i, s = 0;
    for (i = 1; i <= M; ++ i) 
        x = ip, y = ip, In (x, y), In (y, x);
    for (Rt = 1; Rt <= N; ++ Rt)
        if (!dfn[Rt]) Dfs (Rt);
    for (i = 1; i <= N; ++ i) if (is[i]) ++ s;
    for (i = 1, printf ("%d\n", s); i <= N; ++ i) 
        if (is[i]) printf ("%d ", i);
    return 0;
}

 高斯消元

 

#include <cstdio>
#include <iostream>
#include <algorithm>
#define EPS 1e-8
#define rg register
int N;
#define Max 200
typedef double flo; flo a[Max][Max];
inline flo abs (flo x) { return x < 0 ? -x : x; }
inline void swap (flo &a, flo &b) { flo c = a; a = b, b = c; }
bool Gauss ()
{
    rg int i, j, k; flo n;
    for (i = 0; i < N; ++ i)
    {
        for (j = i + 1, k = i; j < N; ++ j)
            if (abs (a[j][i]) > abs (a[k][i])) k = j;
        if ((abs (n = a[k][i])) < EPS) return true;
        for (j = i; j <= N; ++ j) swap (a[i][j], a[k][j]);
        for (j = i; j <= N; ++ j) a[i][j] /= n;
        for (k = 0; k < N; ++ k)
            if (k != i)
                for (n = a[k][i], j = i; j <= N; ++ j)
                    a[k][j] -= a[i][j] * n;
    }
    return false;
}

int main (int argc, char *argv[])
{
    scanf ("%d", &N); rg int i, j;
    for (i = 0; i < N; ++ i)
        for (j = 0; j <= N; ++ j) scanf ("%lf", &a[i][j]);

    if (Gauss ()) return puts ("No Solution"), 0; 

    for (i = 0; i < N; ++ i) printf ("%.2lf\n", a[i][N]);
        
    return 0;
}

 st表

 

#include <cstdio>
#include <iostream>

#define rg register
struct io
{
    static const int BUF = 32310330;
    char p[BUF], *s, e[BUF], *t; int a[24];
    io () : s (p), t (e) { fread (s, 1, sizeof p, stdin); }
    ~io () { fwrite (e, 1, t - e, stdout); }
    operator int ()
    {
        static int v, j;
        v = 0,j = 1;
        for (v = 0, j = 1; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s++ - 48; while (*s > 32);
        return j ? v : -v;
    }
    void pt (int v)
    {
        static int *q = a;
        if (!v) *t ++ = 48;
        else
        {
            if (v < 0) *t ++ = 45, v *= -1;
            for (; v; *q ++ = v % 10 + 48, v /= 10);
            for (; q != a; *t ++ = *--q);
        }
        *t++ = '\n';
    }
} ip;
#define Max 100005
int f[Max][22];
int lg[Max];
inline int max (int a, int b) { return a > b ? a : b; }
int main (int argc, char *argv[])
{
    int N = ip, M = ip; rg int i, j;
    for (i = 1; i <= N; ++ i) f[i][0] = ip;
    for (lg[0] = 1, i = 2; i <= N; ++ i)
    {
        lg[i] = lg[i - 1];
        if ((1 << lg[i] + 1) == i) ++ lg[i];
    }
    for (i = N; i; -- i)
        for (j = 1; (i + (1 << j) - 1) <= N; ++ j)
            f[i][j] = max (f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
    
    for (int x, y, l; M; -- M)
    {
        x = ip, y = ip;
        l = lg [y - x + 1];
        ip.pt (max (f[x][l], f[y - (1 << l) + 1][l]));
    }
    return 0;
}

 高精

 

#include <cstdio>
#include <iostream>
#include <vector>
#include <iomanip>
#include <cassert>
#include <algorithm>
#include <cstring>

const int Big_B = 10; const int Big_L = 1;
inline int intcmp_ (int a, int b) { if (a > b) return 1; return a < b ? -1 : 0; }
struct Int 
{
#define rg register
    inline int max (int a, int b) { return a > b ? a : b; }
    inline int min (int a, int b) { return a < b ? a : b; }
    std :: vector <int> c; Int () {} typedef long long LL; 
    Int (int x) { for (; x > 0; c.push_back (x % Big_B), x /= Big_B); }
    Int (LL x) { for (; x > 0; c.push_back (x % Big_B), x /= Big_B); }
    inline void CrZ () { for (; !c.empty () && c.back () == 0; c.pop_back ()); }
    inline Int &operator += (const Int &rhs)
    {
        c.resize (max (c.size (), rhs.c.size ())); rg int i, t = 0, S;
        for (i = 0, S = rhs.c.size (); i < S; ++ i)
            c[i] += rhs.c[i] + t, t = c[i] >= Big_B, c[i] -= Big_B & (-t);
        for (i = rhs.c.size (), S = c.size (); t && i < S; ++ i)
            c[i] += t, t = c[i] >= Big_B, c[i] -= Big_B & (-t);
        if (t) c.push_back (t); return *this;
    }
    inline Int &operator -= (const Int &rhs)
    {
        c.resize (max (c.size (), rhs.c.size ())); rg int i, t = 0, S;
        for (i = 0, S = rhs.c.size (); i < S; ++ i)
            c[i] -= rhs.c[i] + t, t = c[i] < 0, c[i] += Big_B & (-t);
        for (i = rhs.c.size (), S = c.size (); t && i < S; ++ i)
            c[i] -= t, t = c[i] < 0, c[i] += Big_B & (-t);
        CrZ (); return *this;
    }
    inline Int &operator *= (const Int &rhs)
    {
        rg int na = c.size (), i, j, S, ai; 
        c.resize (na + rhs.c.size ()); LL t;
        for (i = na - 1; i >= 0; -- i)
        {
            ai = c[i], t = 0, c[i] = 0;
            for (j = 0, S = rhs.c.size (); j < S; ++ j)
            {
                t += c[i + j] + (LL) ai * rhs.c[j];
                c[i + j] = t % Big_B, t /= Big_B;
            }
            for (j = rhs.c.size (), S = c.size (); t != 0 && i + j < S; ++ j)
                t += c[i + j], c[i + j] = t % Big_B, t /= Big_B;
            assert (t == 0);
        }
        CrZ (); return *this;
    }
    inline Int &operator /= (const Int &rhs) { return *this = div (rhs); }
    inline Int &operator %= (const Int &rhs) { return div (rhs), *this; }
    inline Int &shlb (int l = 1)
    {
        if (c.empty ()) return *this; c.resize (c.size () + l);rg int i;
        for (i = c.size () - 1; i >= l; -- i) c[i] = c[i - l];
        for (i = 0; i < l; ++ i) c[i] = 0;
        return *this;
    }
    inline Int &shrb (int l = 1)
    {
        for (rg int i = 0; i < c.size () - l; ++ i) c[i] = c[i + l];
        c.resize (max (c.size () - l, 0)); return *this;
    }
    inline Int div (const Int &rhs)
    {
        assert (!rhs.c.empty ()); Int q, r; rg int i; if (rhs > *this) return 0;
        q.c.resize (c.size () - rhs.c.size () + 1); rg int _l, _r, mid;
        for (i = c.size () - 1; i > c.size () - rhs.c.size (); -- i) r.shlb (), r += c[i];
        for (i = c.size () - rhs.c.size (); i >= 0; -- i)
        {
            r.shlb (); r += c[i]; 
            if (r.Comp (rhs) < 0) q.c[i] = 0;
            else 
            {
                _l = 0, _r = Big_B;
                for (; _l != _r; )
                {
                    mid = _l + _r >> 1;
                    if ((rhs * mid).Comp (r) <= 0) _l = mid + 1; else _r = mid;
                }
                q.c[i] = _l - 1, r -= rhs * q.c[i];
            }
        }
        q.CrZ (), *this = r; return q;
    }
    inline int Comp (const Int &rhs) const 
    {
        if (c.size () != rhs.c.size ()) return intcmp_ (c.size (), rhs.c.size ());
        for (rg int i = c.size () - 1; i >= 0; -- i) 
            if (c[i] != rhs.c[i]) return intcmp_ (c[i], rhs.c[i]);
        return 0;
    }
    friend inline Int operator + (const Int &lhs, const Int &rhs)
    { Int res = lhs; return res += rhs; }
    inline friend Int operator - (const Int &lhs, const Int &rhs)
    { 
        if (lhs < rhs)
        {
            putchar ('-'); 
            Int res = rhs; return res -= lhs;
        }
        else { Int res = lhs; return res -= rhs; }
    }
    friend inline Int operator * (const Int &lhs, const Int &rhs)
    { Int res = lhs; return res *= rhs; }
    friend inline Int operator / (const Int &lhs, const Int &rhs)
    { Int res = lhs; return res.div (rhs); }
    friend inline Int operator % (const Int &lhs, const Int &rhs)
    { Int res = lhs; return res.div (rhs), res; }
    friend inline std :: ostream &operator << (std :: ostream &out, const Int &rhs)
    { 
        if (rhs.c.size () == 0) out << "0";
        else 
        {
            out << rhs.c.back ();
            for (rg int i = rhs.c.size () - 2; i >= 0; -- i)
                out << std :: setfill ('0') << std :: setw (Big_L) << rhs.c[i];
        }
        return out;
    } 
    friend inline std :: istream &operator >> (std :: istream &in, Int &rhs)
    {
        static char s[100000];
        in >> s + 1; int Len = strlen (s + 1);
        int v = 0; LL r = 0, p = 1;
        for (rg int i = Len; i >= 1; -- i)
        {
            ++ v; r = r + (s[i] - '0') * p, p *= 10;
            if (v == Big_L) rhs.c.push_back (r), r = 0, v = 0, p = 1;
        }
        if (v != 0) rhs.c.push_back (r); return in;
    }
    friend inline bool operator < (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) < 0; }
    friend inline bool operator <= (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) <= 0; }
    friend inline bool operator > (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) > 0; }
    friend inline bool operator >= (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) >= 0; }
    friend inline bool operator == (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) == 0; }
    friend inline bool operator != (const Int &lhs, const Int &rhs)
    { return lhs.Comp (rhs) != 0; }
#undef rg    
};
int Main ()
{

    return 0;
}
int ZlycerQan = Main ();
int main (int argc, char *argv[]) {;}

 主席树(区间第k小)

 

#include <cstdio>
#include <iostream>
#include <algorithm>
#define rg register
struct IO
{
    static const int BUF = 12312332;
    char p[BUF], *s, *t, e[BUF]; int a[24];
    IO () : s (p), t (e) { fread (s, 1, BUF, stdin); }
    ~IO () { fwrite (e, 1, t - e, stdout); }
    operator int ()
    {
        rg int v = 0, j = 1;
        for (; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s >= 48);
        return j ? v : -v;
    }
    void pt (int v)
    {
        static int *q = a;
        if (!v) *t ++ = 48;
        else
        {
            if (v < 0) *t ++ = 45;
            for (; v; *q ++ = v % 10 + 48, v /= 10);
            for (; q != a; *t ++ = *-- q);
        }
        *t ++ = '\n';    
    }
} ip;

#define Max 600006
namespace pr
{
    int c[Max * 20][2], C, v[Max * 20], rt[Max];
    void Updata (int pre, int &n, int l, int r, int t)
    {
        n = ++ C; v[n] = v[pre] + 1;
        if (l == r) return ;
        int m = l + r >> 1;
        if (t <= m) Updata (c[pre][0], c[n][0], l, m, t), c[n][1] = c[pre][1];
        else Updata (c[pre][1], c[n][1], m + 1, r, t), c[n][0] = c[pre][0];
    }
    
    int Query (int pre, int &n, int l, int r, int k)
    {
        if (l == r) return l;
        int m = l + r >> 1, res = v[c[n][0]] - v[c[pre][0]];
        if (k <= res) return Query (c[pre][0], c[n][0], l, m, k);
        return Query (c[pre][1], c[n][1], m + 1, r, k - res);
    }
}
int a[Max], data[Max], C;
int main (int argc, char *argv[])
{
    int N = ip, M = ip; rg int i;
    
    for (i = 1; i <= N; ++ i) a[i] = ip, data[++ C] = a[i];
    
    std :: sort (data + 1, data + 1 + N);
    int S = std :: unique (data + 1, data + 1 + N) - data - 1;
    
    for (i = 1; i <= N; ++ i)
    {
        a[i] = std :: lower_bound (data + 1, data + 1 + S, a[i]) - data;
        pr :: Updata (pr :: rt[i - 1], pr :: rt[i], 1, S, a[i]);
    }
    
    int x, y, z;
    for (i = 1; i <= M; ++ i)
    {
        x = ip, y = ip, z = ip;
        ip.pt (data[pr :: Query (pr :: rt[x - 1], pr :: rt[y], 1, S, z)]);
    }
    return 0;
}

 树状数组(单点修改,区间求和)

 

#include <cstdio>
#include <iostream>
#define rg register
struct IO 
{
    static const int BUF = 12312313;
    char *s, *t, p[BUF], e[BUF]; int a[24];
    IO () : s (p), t (e) { fread (s, 1, BUF, stdin); }
    ~IO () { fwrite (e, 1, t - e, stdout); }
    
    operator int ()
    {
        rg int v = 0, j = 1;
        for (; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s >= 48);
        return j ? v : -v;
    }
    
    void pt (int v)
    {
        static int *q = a;
        if (!v) *t ++ = 48;
        else 
        {
            if (v < 0) *t ++ = 45;
            for (; v; *q ++ = v % 10 + 48, v /= 10);
            for (; q != a; *t ++ = *-- q);
        }
        *t ++ = '\n';
    }
} ip;

#define Max 1325630
namespace bit
{
    int v[Max], N;
    inline void Pre (int x) { N = x; } 
    
    int Query (int l, int r)
    {
        rg int i, res = 0;
        for (i = l - 1; i; i -= i & -i) res -= v[i];
        for (i = r; i; i -= i & -i) res += v[i];
        return res;
    }
    
    void Change (int p, int t)
    { for (rg int i = p; i <= N; i += i & -i) v[i] += t; return ; }
    
}
int main (int argc, char *argv[])
{
    int N = ip, M = ip; rg int i; bit :: Pre (N);
    
    for (i = 1; i <= N; ++ i) bit :: Change (i, ip);
    
    for (int t, x, y; M; -- M)
    {
        t = ip, x = ip, y = ip;
        if (t == 1) bit :: Change (x, y);
        else ip.pt (bit :: Query (x, y));
    }
    return 0;
}

 LCA (树剖)

 

#include <cstdio>
#include <iostream>
#define rg register

struct IO 
{
    static const int BUF = 12312313;
    char *s, *t, p[BUF], e[BUF]; int a[24];
    IO () : s (p), t (e) { fread (s, 1, BUF, stdin); }
    ~IO () { fwrite (e, 1, t - e, stdout); }
    
    operator int ()
    {
        rg int v = 0, j = 1;
        for (; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s >= 48);
        return j ? v : -v;
    }
    
    void pt (int v)
    {
        static int *q = a;
        if (!v) *t ++ = 48;
        else 
        {
            if (v < 0) *t ++ = 45;
            for (; v; *q ++ = v % 10 + 48, v /= 10);
            for (; q != a; *t ++ = *-- q);
        }
        *t ++ = '\n';
    }
} ip; 
#define Max 500009
int _n[Max << 1], _v[Max << 1], list[Max], EC;
inline void In (int u, int v)
{ _v[++ EC] = v, _n[EC] = list[u], list[u] = EC; }

int up[Max], son[Max], s[Max], f[Max], d[Max];
void Dfs_1 (int n, int F)
{
    f[n] = F, d[n] = d[F] + 1, s[n] = 1; rg int i, v;
    for (i = list[n]; i; i = _n[i])
        if ((v = _v[i]) != F)
        {
            Dfs_1 (v, n), s[n] += s[v];
            if (s[son[n]] < s[v]) son[n] = v;
        }
}

void Dfs_2 (int n, int c)
{
    up[n] = c; if (son[n]) Dfs_2 (son[n], c); else return ;
    for (rg int i = list[n], v; i; i = _n[i])
        if ((v = _v[i]) != f[n] && v != son[n]) Dfs_2 (v, v);
}
inline void swap (int &a, int &b) { int c = a; a = b, b = c; }
int Lca (int x, int y)
{
    for (; up[x] != up[y]; x = f[up[x]])
        if (d[up[x]] < d[up[y]]) swap (x, y);
    return d[x] < d[y] ? x : y;
}

int main (int argc, char *argv[])
{
    int N = ip, M = ip, Rt = ip, x, y; rg int i; 
    for (i = 1; i < N; ++ i)
        x = ip, y = ip, In (x, y), In (y, x);
    Dfs_1 (Rt, 0), Dfs_2 (Rt, Rt);
    for (; M; -- M) ip.pt (Lca (ip, ip));
    return 0;
}

 最短路(堆dij)

 

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#define rg register
struct IO
{
    static const int BUF = 12312332;
    char p[BUF], *s;
    IO () : s (p) { fread (s, 1, sizeof p, stdin); }
    operator int ()
    {
        rg int v = 0, j = 1;
        for (; *s < 48; j = *s ++ ^ 45);
        do v = v * 10 + *s ++ - 48; while (*s >= 48);
        return j ? v : -v;
    }
    
} ip;

struct D 
{ 
    int id, d; D (int a = 0, int b = 0) : id (a), d (b) {} 
    bool operator < (const D &rhs) const { return d > rhs.d; }
};
#define Max 100000
bool is[Max]; int _v[Max], _n[Max], list[Max], _d[Max], d[Max], EC;

void Dij (int S, int T)
{
    std :: priority_queue <D> Q; Q.push (D (S, 0)); rg int i, n, v;
    for (D res; !Q.empty (); )
    {
        res = Q.top (); Q.pop ();
        if (is[res.id]) is[res.id] = true;
        if (res.id == T) return ;
        for (n = res.id, i = list[n]; i; i = _n[i])
            if (d[v = _v[i]] > d[n] + _d[i])
                d[v] = d[n] + _d[i], Q.push (D (v, d[v]));
    }
}

inline void In (int u, int v, int d)
{ _v[++ EC] = v, _n[EC] = list[u], list[u] = EC, _d[EC] = d; }

int main (int argc, char *argv[])
{
    int N = ip, M = ip, S = ip, T = ip, x, y, z; rg int i;
    memset (d, 0x3f, sizeof d);
    
    for (i = 1; i <= M; ++ i)
        x = ip, y = ip, z = ip, In (x, y, z), In (y, x, z);
    Dij (S, T);
    printf ("%d", d[T]);
    
    return 0;
}

 线段树(区间加,区间乘,区间求和)

#include <cstdio>
#include <iostream>
typedef long long LL;
#define rg register
inline void read (LL &n)
{
    rg char c = getchar ();
    for (n = 0; !isdigit (c); c = getchar ());
    for (; isdigit (c); n = n * 10 + c - '0', c = getchar ());
}
#define Max 100009
int L[Max << 2], R[Max << 2]; LL sm[Max << 2], tag1[Max << 2], tag2[Max << 2];
LL a[Max], P;

void Build (int n, int l, int r)
{
    L[n] = l, R[n] = r, tag2[n] = 1;
    if (l == r) { sm[n] = a[l], tag2[n] = 1; return ; }
    int m = l + r >> 1;
    Build (n << 1, l, m), Build (n << 1 | 1, m + 1, r);
    (sm[n] = sm[n << 1] + sm[n << 1 | 1]) %= P;
}
inline void Down (int n)
{
    int lc = n << 1, rc = n << 1 | 1;
    if (tag2[n] != 1) 
    {
        LL &t = tag2[n];
        (tag1[lc] *= t) %= P, (tag1[rc] *= t) %= P;
        (tag2[lc] *= t) %= P, (tag2[rc] *= t) %= P;
        (sm[lc] *= t) %= P, (sm[rc] *= t) %= P; t = 1;
    }
    if (tag1[n])
    {
        LL &t = tag1[n];
        (tag1[lc] += t) %= P, (tag1[rc] += t) %= P;
        (sm[lc] += (R[lc] - L[lc] + 1) * t) %= P, (sm[rc] += (R[rc] - L[rc] + 1) * t) %= P;
        t = 0;
    }
}
void Modi (int n, int l, int r, bool t, LL to)
{
    if (l <= L[n] && R[n] <= r)
    {
        if (t == false) (tag1[n] += to) %= P, (sm[n] += (R[n] - L[n] + 1) * to) %= P; 
        else (tag1[n] *= to) %= P, (tag2[n] *= to) %= P, (sm[n] *= to) %= P;        
        return ;    
    }
    Down (n); int m = L[n] + R[n] >> 1;
    if (l <= m) Modi (n << 1, l, r, t, to);
    if (r > m) Modi (n << 1 | 1, l, r, t, to);
    (sm[n] = sm[n << 1] + sm[n << 1 | 1]) %= P;
}

LL Query (int n, int l, int r)
{
    if (l <= L[n] && R[n] <= r) return sm[n];
    Down (n); LL res = 0; int m = L[n] + R[n] >> 1;
    (sm[n] = sm[n << 1] + sm[n << 1 | 1]) %= P;
    if (l <= m) res = Query (n << 1, l, r);
    if (r > m) res += Query (n << 1 | 1, l, r);
    return res % P;
}

int main (int argc, char *argv[])
{
    int N, M; scanf ("%d%d", &N, &M); read (P); LL t, x, y, z;
    for (rg int i = 1; i <= N; ++ i) read (a[i]);
    for (Build (1, 1, N); M; -- M)
    {
        read (t), read (x), read (y);
        if (t == 1)
            read (z), Modi (1, x, y, true, z);
        else if (t == 2)
            read (z), Modi (1, x, y, false, z);
        else printf ("%lld\n", Query (1, x, y));
    }
    return 0;
}