Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)

时间:2022-06-18 10:21:35

题目链接

\(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= =

以后要注意常量啊啊啊


\(Description\)

每个位置有一个\(3\times3\)的矩阵,要求支持区间赋值和求区间乘积。

输出答案对\(998244353\)取模后的结果。

\(n,q\leq10^5\)。

\(Solution\)

裸的线段树+矩阵快速幂是\(O(3^3q\log^2n)\)的,因为维护区间乘的话,区间赋值为矩阵\(A\)的时候要赋值\(A^{r-l+1}\),带一个快速幂。

考虑怎么把那个快速幂去掉。发现对于长度为\(n\)的线段树的区间长度只有\(O(\log n)\)种,可以预处理出\(A\)的区间次幂,直接赋值。

不同区间的长度可能比较乱,但是把线段树长度补成\(2^k\),就很容易维护了。

复杂度\(O(3^3(n+q)\log n)\)。

写了这个题的代码纯属闲...


//439ms	46MB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mod 998244353
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<17)+7,M=1e5+5,BIT=17; int ref[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read();
struct Matrix
{
int a[3][3];
inline void Read()
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j) a[i][j]=read();
}
Matrix operator *(const Matrix &x)
{
Matrix res;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
{
LL tmp=0;
for(int k=0; k<3; ++k) tmp+=1ll*a[i][k]*x.a[k][j]%mod;
res.a[i][j]=tmp%mod;
}
return res;
}
}A[N],pw[M][BIT+1];
struct Segment_Tree
{
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,ls
#define rson m+1,r,rs
#define S N<<2
int tag[S];
Matrix t[S];
#undef S
#define Upd(rt,id,l) t[rt]=pw[id][ref[l]], tag[rt]=id
#define Update(rt) t[rt]=t[ls]*t[rs]
inline void PushDown(int rt,int m)
{
Upd(ls,tag[rt],m>>1), Upd(rs,tag[rt],m>>1), tag[rt]=0;
}
void Build(int l,int r,int rt)
{
if(l==r) {t[rt]=A[l]; return;}
int m=l+r>>1; Build(lson), Build(rson), Update(rt);
}
void Modify(int l,int r,int rt,int L,int R,int id)
{
if(L<=l && r<=R) {Upd(rt,id,r-l+1); return;}
if(tag[rt]) PushDown(rt,r-l+1);
int m=l+r>>1;
if(L<=m) Modify(lson,L,R,id);
if(m<R) Modify(rson,L,R,id);
Update(rt);
}
Matrix Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return t[rt];
if(tag[rt]) PushDown(rt,r-l+1);
int m=l+r>>1;
if(L<=m)
if(m<R) return Query(lson,L,R)*Query(rson,L,R);
else return Query(lson,L,R);
return Query(rson,L,R);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
} int main()
{
#define S 1,lim,1
int n=read()-1,Q=read(),lim=1,bit=0;
for(int i=1; i<=n; ++i) A[i].Read();
while(lim<n) lim<<=1, ++bit;
for(int i=0; i<=bit; ++i) ref[1<<i]=i;
T.Build(S);
for(int t=0; Q--; )
switch(read())
{
case 1:
{
int l=read(),r=read(); pw[++t][0].Read();
for(int i=1; i<=bit; ++i) pw[t][i]=pw[t][i-1]*pw[t][i-1];
T.Modify(S,l,r,t); break;
}
case 2:
{
int l=read(),r=read();
Matrix res=T.Query(S,l,r-1); LL ans=0;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j) ans+=res.a[i][j];
printf("%d\n",(int)(ans%mod)); break;
}
} return 0;
}