Parallelogram Counting
Time Limit: 5000MS | |
Memory Limit: 65536K |
Total Submissions: 5605 | |
Accepted: 1885 |
Description
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases. It is followed by the input data for each test case.
The first line of each test case contains an integer n (1 <= n <= 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
The first line of each test case contains an integer n (1 <= n <= 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
Output
Output should contain t lines.
Line i contains an integer showing the number of the parallelograms as described above for test case i.
Line i contains an integer showing the number of the parallelograms as described above for test case i.
Sample Input
2
6
0 0
2 0
4 0
1 1
3 1
5 1
7
-2 -1
8 9
5 7
1 1
4 8
2 0
9 8
Sample Output
5
6
给你n个点,问最多可以形成多少个平行四边形:
利用平行四边形对角线互相平分原理,对其进行扩展,求任意两点重点,然后排序,利用排列组合从中抽取两点即可;
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; struct none{ int x,y; }no[10000],n1[1000000]; bool cmp(none x,none y) {if(x.x!=y.x) return x.x<y.x; else return x.y<y.y; } int main() {int t,n,m=1,k; scanf("%d",&t); while(t--) {scanf("%d",&n); k=0; for(int i=0;i<n;i++) scanf("%d%d",&no[i].x,&no[i].y); for(int i=0;i<n-1;i++) for(int j=i+1;j<n;j++) {n1[k].x=no[i].x+no[j].x; n1[k].y=no[i].y+no[j].y; k++; } sort(n1,n1+k,cmp); long long ans=0,T=1; for(int i=1;i<k;i++) {if(n1[i].x==n1[i-1].x&&n1[i].y==n1[i-1].y) T++; else {ans=ans+T*(T-1)/2; T=1; } } printf("Case %d: %lld\n",m++,ans); }}