小学徒成长系列—StringBuilder & StringBuffer关键源码解析

时间:2022-01-09 10:03:22

在前面的博文《小学徒成长系列—String关键源码解析》和《小学徒进阶系列—JVM对String的处理》中,我们讲到了关于String的常用方法以及JVM对字符串常量String的处理。

但是在Java中,关于字符串操作的类还有两个,它们分别是StringBuilder和StringBuffer。我们先来就讲解一下String类和StringBuilder、StringBuffer的联系吧。

String、StringBuilder、StringBuffer的异同点

结合之前写的博文,我们对这三个常用的类的异同点进行分析:

异:

1>String的对象是不可变的;而StringBuilder和StringBuffer是可变的。

2>StringBuilder不是线程安全的;而StringBuffer是线程安全的

3>String中的offset,value,count都是被final修饰的不可修改的;而StringBuffer和StringBuilder中的value,count都是继承自AbstractStringBuilder类的,没有被final修饰,说明他们在运行期间是可修改的,而且没有offset变量。

同:

三个类都是被final修饰的,是不可被继承的。

StringBuilder和StringBuffer的构造方法

其实StringBuilder和StringBuffer的构造方法类型是一样的,里面都是通过调用父类的构造方法进行实现的,在这里,我主要以StringBuilder为例子讲解,StringBuffer就不重复累赘的讲啦。

1>构建一个初始容量为16的默认的字符串构建

 public StringBuilder() {
super(16);
}

从构造方法中我们看到,构造方法中调用的是父类AbstractStringBuilder中的构造方法,我们来看看,父类中的构造方法:

 /**
* 构造一个不带任何字符的字符串生成器,其初始容量由 capacity 参数指定。
* @params capacity 数组初始化容量
*/
AbstractStringBuilder(int capacity) {
value = new char[capacity];
}

这个构造方法说明的是,创建一个初始容量由 capacity 参数指定的字符数组,而子类中传过来的是16,所以创建的就是初始容量为16的字符数组

2>构造一个不带任何字符的字符串生成器,其初始容量由 capacity 参数指定。

 public StringBuilder(int capacity) {
super(capacity);
}

这个构造方法调用的跟上面1>的构造方法是同一个的,只是这里子类中的初始化容量由用户决定。

3>构造一个字符串生成器,并初始化为指定的字符串内容。该字符串生成器的初始容量为 16 加上字符串参数的长度。

 public StringBuilder(String str) {
super(str.length() + 16);
append(str);
}

这个构造方法首先调用和1>一样的父类构造方法,然后再调用本类中的append()方法将字符串str拼接到本对象已有的字符串之后。

4>构造一个字符串生成器,包含与指定的 CharSequence 相同的字符。该字符串生成器的初始容量为 16 加上 CharSequence 参数的长度。

 public StringBuilder(CharSequence seq) {
this(seq.length() + 16);
append(seq);
}

嗯,这个构造方法,大家一看就知道跟上面的差不多啦,我就不介绍啦。

StringBuilder常用的方法

在StringBuilder中,很多方法最终都是进行一定的逻辑处理,然后通过调用父类AbstractStringBuilder中的方法进行实现的。

1>append(String str)

从下面的代码中我们可以看到,他是直接调用父类的append方法进行实现的。

 public StringBuilder append(String str) {
super.append(str);
return this;
}

下面我们再看下父类AbstractStringBuilder中的append方法是怎么写的

 public AbstractStringBuilder append(String str) {
//注意,当str的值为nul时,将会在当前字符串对象后面添加上Null字符串
if (str == null) str = "null";
//获取需要添加的字符串的长度
int len = str.length();
//判断添加后的字符串对象是否超过容量,若是,扩容
ensureCapacityInternal(count + len);
//将str中的字符串复制到value数组中
str.getChars(0, len, value, count);
//更新当前字符串对象的字符串长度
count += len;
return this;
}

2> ensureCapacityInternal

下面我们看下,他每次拼接字符串的时候,是怎样进行扩容的:

  /**
* This method has the same contract as ensureCapacity, but is
* never synchronized.
*/
private void ensureCapacityInternal(int minimumCapacity) {
// overflow-conscious code
// 如果需要扩展到的容量比当前字符数组长度要大
// 那么就正常扩容
if (minimumCapacity - value.length > 0)
expandCapacity(minimumCapacity);
} /**
* This implements the expansion semantics of ensureCapacity with no
* size check or synchronization.
*/
void expandCapacity(int minimumCapacity) {
// 初始化新的容量大小为当前字符串长度的2倍加2
int newCapacity = value.length * 2 + 2;
// 如果新容量大小比传进来的最小容量还要小
// 就是用最小的容量为新数组的容量
if (newCapacity - minimumCapacity < 0)
newCapacity = minimumCapacity;
// 如果新的容量或者最小容量小于0
// 抛异常并且讲新容量设置成Integer最能存储的最大值
if (newCapacity < 0) {
if (minimumCapacity < 0) // overflow
throw new OutOfMemoryError();
newCapacity = Integer.MAX_VALUE;
}
// 创建容量大小为newCapacity的新数组
value = Arrays.copyOf(value, newCapacity);
}

3>append(StringBuffer sb)

从这里我们可以看到,它又是调用父类的方法进行拼接的。

 public StringBuilder append(StringBuffer sb) {
super.append(sb);
return this;
}

继续看父类中的拼接方法:

  // Documentation in subclasses because of synchro difference
public AbstractStringBuilder append(StringBuffer sb) {
// 如果sb的值为null,这里就会为字符串添加上字符串“null”
if (sb == null)
return append("null");
// 获取需要拼接过来的字符串的长度
int len = sb.length();
// 扩容当前兑现搞定字符数组容量
ensureCapacityInternal(count + len);
// 进行字符串的拼接
sb.getChars(0, len, value, count);
// 更新当前字符串对象的长度变量
count += len;
return this;
}

4>public StringBuilder delete(int start, int end)

删除从start开始到end结束的字符(包括start但不包括end)

 public StringBuilder delete(int start, int end) {
super.delete(start, end);
return this;
}

是的,又是调用父类进行操作的。

 /**
* Removes the characters in a substring of this sequence.
* The substring begins at the specified {@code start} and extends to
* the character at index {@code end - 1} or to the end of the
* sequence if no such character exists. If
* {@code start} is equal to {@code end}, no changes are made.
*
* @param start The beginning index, inclusive.
* @param end The ending index, exclusive.
* @return This object.
* @throws StringIndexOutOfBoundsException if {@code start}
* is negative, greater than {@code length()}, or
* greater than {@code end}.
*/
public AbstractStringBuilder delete(int start, int end) {
// 健壮性的检查
if (start < 0)
throw new StringIndexOutOfBoundsException(start);
if (end > count)
end = count;
if (start > end)
throw new StringIndexOutOfBoundsException();
// 需要删除的长度
int len = end - start;
if (len > 0) {
// 进行复制,将被删除的元素后面的复制到前面去
System.arraycopy(value, start+len, value, start, count-end);
// 更新字符串长度
count -= len;
}
return this;
}

其实看了那么多,我们也很容易发现,不管是String类还是现在博文中的StringBuilder和StringBuffer,底层实现都用到了Arrays.copyOfRange(original, from, to);和System.arraycopy(src, srcPos, dest, destPos, length);这两个方法实现的。

在看完上面那段源代码之后,我突然想到了一个问题,就是如果需要剩下的字符个数少于需要被覆盖的字符个数时怎么办,看下面的代码:

 import java.util.Arrays;

 public class StringBuilderTest {
public static void main(String[] args) {
char[] src = {'a', 'b', 'c', 'd', 'e', 'f', 'g'};
int start = 4;
int end = 5;
int len = end - start;
if (len > 0) {
//进行复制,将被删除
System.arraycopy(src, start+len, src, start, src.length-end);
}
System.out.println(src); StringBuilder stringBuilder = new StringBuilder("abcdefg");
stringBuilder.delete(4, 5);
System.out.println(stringBuilder);
}
}

结果输出了:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEcAAAAhCAIAAAAEfyEPAAABT0lEQVRYhe2X3ZGFIAyFqSsFpZ5Uk2YohvvA3fyoOMLiGHc5bwYIfOTgTFL5i0pPH+AWLar36J9RMaaUgPJY2u/qXegr5LG0V3VWK4JhqlIKo6XKBB7yVqV6ALlFy0EAxAQHI2YFkMJnmZyQlcpWKbkayggQWW+04n1ULI4gUHsQmIRZRxjVQ5ngZw6j7r5z4FGtNKPJchLvpDJ3bE1vCess5LK1lojRbb/B2FP5SJaKt+KdVPaO5eiVanvO+6h0eSveR2WzZAJfq+SG1IFmJ/Ejoykt4xUHahoC68DjeA+VMyAgQjVhfRn1c/+3sJb1KBJFeVrO33aB3RjAGeYw3kUVQa33M/yunpQpCl2JX1SUWs3VonqPFtV7tKjeo9U19ml1jaPd4TlVrK5xElWornGG4nWNMxSxa5xBFbBrnEIVQdPf1ZP6ZXfYUpRazdUHNS9pAURJ7aMAAAAASUVORK5CYII=" alt="" />

奇怪,为什么StringBuilder可以输出abcdefg而我的会多了一个g呢?原因是在StringBuilder中的toString方法中重新创建了一个有效数字为count的,也就是说值为abcdefg的字符串对象,如下代码:

 public String toString() {
// Create a copy, don't share the array
return new String(value, 0, count);
}

5>public StringBuilder replace(int start, int end, String str)

关于这个方法,因为是直接调用父类中的方法进行实现的,所以我们继续直接看父类中的方法吧:

 /**
* Replaces the characters in a substring of this sequence
* with characters in the specified <code>String</code>. The substring
* begins at the specified <code>start</code> and extends to the character
* at index <code>end - 1</code> or to the end of the
* sequence if no such character exists. First the
* characters in the substring are removed and then the specified
* <code>String</code> is inserted at <code>start</code>. (This
* sequence will be lengthened to accommodate the
* specified String if necessary.)
*
* @param start The beginning index, inclusive.
* @param end The ending index, exclusive.
* @param str String that will replace previous contents.
* @return This object.
* @throws StringIndexOutOfBoundsException if <code>start</code>
* is negative, greater than <code>length()</code>, or
* greater than <code>end</code>.
*/
public AbstractStringBuilder replace(int start, int end, String str) {
// 健壮性的检查
if (start < 0)
throw new StringIndexOutOfBoundsException(start);
if (start > count)
throw new StringIndexOutOfBoundsException("start > length()");
if (start > end)
throw new StringIndexOutOfBoundsException("start > end"); if (end > count)
end = count; // 获取需要添加的字符串的长度
int len = str.length();
// 计算新字符串的长度
int newCount = count + len - (end - start);
// 对当前对象的数组容量进行扩容
ensureCapacityInternal(newCount);
// 进行数组的中的元素移位,从而空出足够的空间来容纳需要添加的字符串
System.arraycopy(value, end, value, start + len, count - end);
// 将str复制到value中
str.getChars(value, start);
// 更新字符串长度
count = newCount;
return this
}

6>public StringBuilder insert(int offset, String str)

在offset位置插入字符串str,他的实现也是通过父类进行实现的,继续看父类中的相应方法:

 /**
* Inserts the string into this character sequence.
* <p>
* The characters of the {@code String} argument are inserted, in
* order, into this sequence at the indicated offset, moving up any
* characters originally above that position and increasing the length
* of this sequence by the length of the argument. If
* {@code str} is {@code null}, then the four characters
* {@code "null"} are inserted into this sequence.
* <p>
* The character at index <i>k</i> in the new character sequence is
* equal to:
* <ul>
* <li>the character at index <i>k</i> in the old character sequence, if
* <i>k</i> is less than {@code offset}
* <li>the character at index <i>k</i>{@code -offset} in the
* argument {@code str}, if <i>k</i> is not less than
* {@code offset} but is less than {@code offset+str.length()}
* <li>the character at index <i>k</i>{@code -str.length()} in the
* old character sequence, if <i>k</i> is not less than
* {@code offset+str.length()}
* </ul><p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param str a string.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public AbstractStringBuilder insert(int offset, String str) {
if ((offset < 0) || (offset > length()))
throw new StringIndexOutOfBoundsException(offset);
if (str == null)
str = "null";
int len = str.length();
ensureCapacityInternal(count + len);
// 将字符串后移为插入的字符串留充足的空间
System.arraycopy(value, offset, value, offset + len, count - offset);
// 将str复制到value数组中
str.getChars(value, offset);
// 更新当前对象中记录的长度
count += len;
return this;
}

7>indexOf(String str)

其实这个的实现主要是借助了String对象的indexOf方法来实现的,具体可以参考博文:http://www.cnblogs.com/xiaoxuetu/archive/2013/06/05/3118229.html 这里就不详细进行讲解了:

 /**
* @throws NullPointerException {@inheritDoc}
*/
public int indexOf(String str) {
return indexOf(str, 0);
}

调用了同一个类中的indexOf方法:

 /**
* @throws NullPointerException {@inheritDoc}
*/
public int indexOf(String str, int fromIndex) {
//调用了String类中的静态方法indexOf
return String.indexOf(value, 0, count,
str.toCharArray(), 0, str.length(), fromIndex);
}

String.indexOf()方法是默认权限的,也就是只有与他同包的情况下才能够进行访问这个方法。

8> lastIndexOf()

  lastIndexOf()方法跟indexOf()差不多,调用了String.lastIndexOf()方法进行实现,再次不重复说明。

9> public StringBuilder reverse()

我们经常进行字符串的逆转,面试的时候也有经常问到,那么实际上在jdk中式怎么完成这些操作的呢?

首先我们看下StringBuilder中的reverse方法():

 public StringBuilder reverse() {
//调用父类的reverse方法
super.reverse();
return this;
}

一般情况下,如果让我们来进行逆转,会怎么写呢?我想很多人都会像下面那样子写吧:

 public String reverse(char[] value){
//折半,从中间开始置换
for (int i = (value.length - 1) >> 1; i >= 0; i--){
char temp = value[i];
value[i] = value[value.length - 1 - i];
value[value.length - 1 - i] = temp;
}
return new String(value);
}

确实很简单,但是一个完整的 Unicode 字符叫代码点CodePoint,而一个 Java char 叫 代码单元 code unit。如果String 对象以UTF-16保存 Unicode 字符,需要用2个字符表示一个超大字符集的汉字,这这种表示方式称之为 Surrogate,第一个字符叫 Surrogate High,第二个就是 Surrogate Low。所在在JDK中也加入了判断一个char是否是Surrogate区的字符:

 /**
* Causes this character sequence to be replaced by the reverse of
* the sequence. If there are any surrogate pairs included in the
* sequence, these are treated as single characters for the
* reverse operation. Thus, the order of the high-low surrogates
* is never reversed.
*
* Let <i>n</i> be the character length of this character sequence
* (not the length in <code>char</code> values) just prior to
* execution of the <code>reverse</code> method. Then the
* character at index <i>k</i> in the new character sequence is
* equal to the character at index <i>n-k-1</i> in the old
* character sequence.
*
* <p>Note that the reverse operation may result in producing
* surrogate pairs that were unpaired low-surrogates and
* high-surrogates before the operation. For example, reversing
* "\uDC00\uD800" produces "\uD800\uDC00" which is
* a valid surrogate pair.
*
* @return a reference to this object.
*/
public AbstractStringBuilder reverse() {
// 默认没有存储到Surrogate区的字符
boolean hasSurrogate = false;
int n = count - 1;
// 折半,遍历并且首尾相应位置置换
for (int j = (n-1) >> 1; j >= 0; --j) {
char temp = value[j];
char temp2 = value[n - j];
if (!hasSurrogate) {
// 判断一个char是否是Surrogate区的字符
hasSurrogate = (temp >= Character.MIN_SURROGATE && temp <= Character.MAX_SURROGATE)
|| (temp2 >= Character.MIN_SURROGATE && temp2 <= Character.MAX_SURROGATE);
}
// 首尾值置换
value[j] = temp2;
value[n - j] = temp;
} // 如果含有Surrogate区的字符
if (hasSurrogate) {
// Reverse back all valid surrogate pairs
for (int i = 0; i < count - 1; i++) {
char c2 = value[i];
if (Character.isLowSurrogate(c2)) {
char c1 = value[i + 1];
if (Character.isHighSurrogate(c1)) {
//下面这行代码相当于
//value[i]=c1; i=i+1;
value[i++] = c1;
value[i] = c2;
}
}
}
}
return this;
}

StringBuffer的常用方法

前面我们知道StringBuffer相当于StringBuilder来说是线程安全的,所以再StringBuffer中,所有的方法都加了同步synchronized,例如append(String str)方法:

public synchronized StringBuffer append(String str) {
super.append(str);
return this;
}

具体内部实现就不详细说明啦,跟StringBuilder是一样的,大部分都是调用AbstractStringBuilder进行实现的。