Problem Introduction
The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) and \(b\) (which are not both equal to 0) is the greatest integer \(d\) that divides both \(a\) and \(b\).
Problem Description
Task.Given two integer \(a\) and \(b\), find their greatest common divisor.
Input Format.The two integers \(a\),\(b\) are given in the same line separated by space.
Constraints. \(1 \leq a, b \leq 2 \cdot 10^9\).
Output Format. Output \(GCD(a,b)\).
Sample 1.
Input:
18 35
Output:
1
Sample 2.
Input:
28851538 1183019
Output:
17657
Solution
# Uses python3
import sys
def gcd(a, b):
if b == 0:
return a
return gcd(b, a % b)
if __name__ == "__main__":
input = sys.stdin.read()
a, b = map(int, input.split())
print(gcd(a, b))