Using python2.7 I found a weird time execution case:
使用python2.7我发现了一个奇怪的时间执行情况:
data = dict( zip( a[0].split( ':' ), a[1].split( ':' ) ) )
data = { name: value for name, value in zip(a[0].split( ':' ), a[1].split( ':' )) }
Those two calls seems absolutely the same to me, however, I found that the dictionary comprehension version is about 4% faster - not too much, but very stable.
这两个电话对我来说似乎完全一样,但是,我发现字典理解版本的速度提高了约4% - 不是太多,而是非常稳定。
Is this true, and if so, why? Or is it just my imagination?
这是真的,如果是的话,为什么?还是只是我的想象力?
1 个解决方案
#1
Your input sample is too small. Looking up the global name dict()
takes more time than just running the dict comprehension (the latter doesn't require name lookups), but if you test against a large number of key-value pairs dict()
wins as the looping is done entirely in C.
您的输入样本太小。查找全局名称dict()比运行dict理解需要更多的时间(后者不需要名称查找),但如果你针对大量的键值对进行测试,则dict()会在循环完成时获胜完全在C.
Test the difference against a large number of key-value pairs, and reduce the test to just the dict()
call or the dictionary comprehension (the zip()
and str.split()
calls are executed just once for both cases and can be ignored):
测试大量键值对的差异,并将测试简化为dict()调用或字典理解(zip()和str.split()调用仅针对两种情况执行一次,并且可以忽略):
>>> from timeit import timeit
>>> import random
>>> from string import ascii_lowercase
>>> kv_pairs = [(''.join(random.sample(ascii_lowercase, random.randint(10, 20))), ''.join(random.sample(ascii_lowercase, random.randint(10, 20))))
... for _ in xrange(10000)]
>>> len(dict(kv_pairs)) # the random keys happen to be all unique.
10000
>>> timeit('{k: v for k, v in kv_pairs}', 'from __main__ import kv_pairs', number=1000)
1.3174479007720947
>>> timeit('dict(kv_pairs)', 'from __main__ import kv_pairs', number=1000)
0.6737580299377441
>>> timeit('{k: v for k, v in kv_pairs}', 'from __main__ import kv_pairs; kv_pairs = kv_pairs[:3]')
0.511167049407959
>>> timeit('dict(kv_pairs)', 'from __main__ import kv_pairs; kv_pairs = kv_pairs[:3]')
0.6696300506591797
So for 10k key-value pairs (first two timing tests), dict()
is twice as fast, for just 3 pairs (second two timings), the dict comprehension wins.
因此,对于10k键值对(前两个时序测试),dict()的速度是两倍,仅3对(后两个时序),dict理解获胜。
You can see why when you decompile the bytecode; the dictionary comprehension uses a nested code object to implement the actual dictionary building:
你可以看到为什么在反编译字节码时;字典理解使用嵌套代码对象来实现实际的字典构建:
>>> import dis
>>> dis.dis(compile('{k: v for k, v in kv_pairs}', '', 'exec'))
1 0 LOAD_CONST 0 (<code object <dictcomp> at 0x102ef69b0, file "", line 1>)
3 MAKE_FUNCTION 0
6 LOAD_NAME 0 (kv_pairs)
9 GET_ITER
10 CALL_FUNCTION 1
13 POP_TOP
14 LOAD_CONST 1 (None)
17 RETURN_VALUE
>>> dis.dis(compile('{k: v for k, v in kv_pairs}', '', 'exec').co_consts[0])
1 0 BUILD_MAP 0
3 LOAD_FAST 0 (.0)
>> 6 FOR_ITER 21 (to 30)
9 UNPACK_SEQUENCE 2
12 STORE_FAST 1 (k)
15 STORE_FAST 2 (v)
18 LOAD_FAST 2 (v)
21 LOAD_FAST 1 (k)
24 MAP_ADD 2
27 JUMP_ABSOLUTE 6
>> 30 RETURN_VALUE
>>> dis.dis(compile('dict(kv_pairs)', '', 'exec'))
1 0 LOAD_NAME 0 (dict)
3 LOAD_NAME 1 (kv_pairs)
6 CALL_FUNCTION 1
9 POP_TOP
10 LOAD_CONST 0 (None)
13 RETURN_VALUE
By using a very small sample, you gave the LOAD_NAME
step for dict
too much weight; the dict comprehension involves much more bytecode, executed each iteration.
通过使用非常小的样本,您为LOID_NAME提供了太多重量的dict步骤; dict理解涉及更多字节码,每次迭代执行。
#1
Your input sample is too small. Looking up the global name dict()
takes more time than just running the dict comprehension (the latter doesn't require name lookups), but if you test against a large number of key-value pairs dict()
wins as the looping is done entirely in C.
您的输入样本太小。查找全局名称dict()比运行dict理解需要更多的时间(后者不需要名称查找),但如果你针对大量的键值对进行测试,则dict()会在循环完成时获胜完全在C.
Test the difference against a large number of key-value pairs, and reduce the test to just the dict()
call or the dictionary comprehension (the zip()
and str.split()
calls are executed just once for both cases and can be ignored):
测试大量键值对的差异,并将测试简化为dict()调用或字典理解(zip()和str.split()调用仅针对两种情况执行一次,并且可以忽略):
>>> from timeit import timeit
>>> import random
>>> from string import ascii_lowercase
>>> kv_pairs = [(''.join(random.sample(ascii_lowercase, random.randint(10, 20))), ''.join(random.sample(ascii_lowercase, random.randint(10, 20))))
... for _ in xrange(10000)]
>>> len(dict(kv_pairs)) # the random keys happen to be all unique.
10000
>>> timeit('{k: v for k, v in kv_pairs}', 'from __main__ import kv_pairs', number=1000)
1.3174479007720947
>>> timeit('dict(kv_pairs)', 'from __main__ import kv_pairs', number=1000)
0.6737580299377441
>>> timeit('{k: v for k, v in kv_pairs}', 'from __main__ import kv_pairs; kv_pairs = kv_pairs[:3]')
0.511167049407959
>>> timeit('dict(kv_pairs)', 'from __main__ import kv_pairs; kv_pairs = kv_pairs[:3]')
0.6696300506591797
So for 10k key-value pairs (first two timing tests), dict()
is twice as fast, for just 3 pairs (second two timings), the dict comprehension wins.
因此,对于10k键值对(前两个时序测试),dict()的速度是两倍,仅3对(后两个时序),dict理解获胜。
You can see why when you decompile the bytecode; the dictionary comprehension uses a nested code object to implement the actual dictionary building:
你可以看到为什么在反编译字节码时;字典理解使用嵌套代码对象来实现实际的字典构建:
>>> import dis
>>> dis.dis(compile('{k: v for k, v in kv_pairs}', '', 'exec'))
1 0 LOAD_CONST 0 (<code object <dictcomp> at 0x102ef69b0, file "", line 1>)
3 MAKE_FUNCTION 0
6 LOAD_NAME 0 (kv_pairs)
9 GET_ITER
10 CALL_FUNCTION 1
13 POP_TOP
14 LOAD_CONST 1 (None)
17 RETURN_VALUE
>>> dis.dis(compile('{k: v for k, v in kv_pairs}', '', 'exec').co_consts[0])
1 0 BUILD_MAP 0
3 LOAD_FAST 0 (.0)
>> 6 FOR_ITER 21 (to 30)
9 UNPACK_SEQUENCE 2
12 STORE_FAST 1 (k)
15 STORE_FAST 2 (v)
18 LOAD_FAST 2 (v)
21 LOAD_FAST 1 (k)
24 MAP_ADD 2
27 JUMP_ABSOLUTE 6
>> 30 RETURN_VALUE
>>> dis.dis(compile('dict(kv_pairs)', '', 'exec'))
1 0 LOAD_NAME 0 (dict)
3 LOAD_NAME 1 (kv_pairs)
6 CALL_FUNCTION 1
9 POP_TOP
10 LOAD_CONST 0 (None)
13 RETURN_VALUE
By using a very small sample, you gave the LOAD_NAME
step for dict
too much weight; the dict comprehension involves much more bytecode, executed each iteration.
通过使用非常小的样本,您为LOID_NAME提供了太多重量的dict步骤; dict理解涉及更多字节码,每次迭代执行。