//图的建立的实现->邻结矩阵和邻结表两种表示方法
#include <cstdio>
#include <cstdlib>
//#define _OJ_ int visit[100];
typedef struct Lnode
{
int data; //邻结点的位置下标
// int weight;
struct Lnode *next; //表由多排的链表组成 } Lnode, *Linklist; typedef struct Fnode
{
int elem; //每个顶点的信息 是数字或是字符
Linklist firstcell; //构成多个头节点
} Fnode1[100]; typedef struct Graph1
{
int nv;
int ne;
Fnode1 G; //图由顶点数,边数,和邻接表组成
} Graph1, *Graph; typedef struct Edge1
{
int v1;
int v2;
// int weight; //边由两个顶点的值构成
} Edge1, *Edge; Graph
creat_graph(int vertex, int edge)
//分配边数和节点数并初始化
{
int i;
Graph g;
g = (Graph) malloc (sizeof(Graph1));
g->nv = vertex;
g->ne = edge; for(i = 0;i < vertex; i++) {
g->G[i].firstcell = NULL; //把每一个头接点赋初值
g->G[i].elem = i; //输入每个节点的信息
} return g;
} void
inser_edge(Graph g, Edge e)
{
Linklist L, L1;
L = (Linklist) malloc (sizeof(Lnode));
L->data = e->v2;
L->next = g->G[e->v1].firstcell;
g->G[e->v1].firstcell = L;
//无向图的插入两边 每次增加一个节点将其插入在最前面
L1 = (Linklist) malloc (sizeof(Lnode));
L1->data = e->v1;
L1->next = g->G[e->v2].firstcell;
g->G[e->v2].firstcell = L1;
} Graph
build_Graph(void)
{
Graph g;
Edge e;
int i, j, vertex, edge;
scanf("%d %d", &vertex, &edge);
g = creat_graph(vertex, edge); if(edge > 0) {
e = (Edge) malloc (sizeof(Edge1));
for(i = 0;i < edge; i++) {
scanf("%d %d", &e->v1, &e->v2);
inser_edge(g, e);
} return g;
}
} void
DFS(Graph g, int v)
{
int i;
visit[v] = 1;
printf("%d ", g->G[v].elem); while (g->G[v].firstcell->next != NULL) {
if(visit[g->G[v].firstcell->data] == 0)
DFS(g, g->G[v].firstcell->data);
g->G[v].firstcell = g->G[v].firstcell->next;
} } void
DFS_travers(Graph g)
{
int i;
for(i = 0;i < g->nv; i++)
visit[i] = 0; for(i = 0;i < g->nv; i++)
if(visit[i] == 0) DFS(g, i);
} typedef struct Queue1
{
int top;
int base;
int *data1;
} Queue1, *Queue; Queue
creat_queue(void)
{
Queue q;
q = (Queue) malloc (sizeof(Queue1));
q->data1 = (int*) malloc (100 * sizeof(int));
q->base = q->top = 0;
return q;
} int
isempty(Queue q)
{
if(q->base == q->top)
return 1;
else
return 0;
} void
Enqueue(Queue q, int data)
{
q->data1[q->top++] = data;
} int
Dequeue(Queue q)
{
return q->data1[q->base++];
} void
BFS(Graph g, int v)
{ int i;
Queue q;
Linklist L;
q = creat_queue();
printf("%d ", g->G[v].elem);
visit[v] = 1;
Enqueue(q, v); while (isempty(q) != 1) {
i = Dequeue(q);
L = g->G[i].firstcell;
while (L) {
if(visit[L->data] == 0) {
printf("%d ", g->G[L->data].elem);
visit[L->data] = 1;
Enqueue(q, L->data);
}
L = L->next;
}
} } void
BFS_travers(Graph g)
{
int i;
for(i = 0;i < g->nv; i++)
visit[i] = 0;
for(i = 0;i < g->nv; i++) {
if(visit[i] == 0)
BFS(g, i);
}
} int main(int argc, char const *argv[]) {
#ifndef _OJ_ //ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif int i, j;
Graph g;
g = build_Graph();
// for(i = 0;i < g->nv; i++) {
// //printf("%p\n", g->G[i].firstcell); //循环重复的遍历每一条链表
// printf("%d -> ", i);
// while (g->G[i].firstcell != NULL) {
// printf("%d ",g->G[i].firstcell->data);
// g->G[i].firstcell = g->G[i].firstcell->next;
// }
// printf("\n");
// }
DFS_travers(g);
// BFS_travers(g); return 0;
}
/*
8 9
0 1
0 2
1 3
1 4
2 5
2 6
3 7
4 7
5 6
vertex:A→:2→:1
vertex:B→:4→:3→:0
vertex:C→:6→:5→:0
vertex:D→:7→:1
vertex:E→:7→:1
vertex:F→:6→:2
vertex:G→:5→:2
vertex:H→:4→:3
建立无误
BFS: 0 2 1 6 5 4 3 7
DFS: 0 2 6 5 1 4 7 3
*/