平面上的点和直线上的点一样多

时间:2021-02-23 09:27:53

$\mathbb{R}^2$和$\mathbb{R}$之间可以形成双射.

由于$\mathbb{R}^2$可以和$[0,1]\times [0,1]$形成双射,而$\mathbb{R}$可以和$[0,1]$形成双射,因此我们只用证明

 

$[0,1]\times [0,1]$可以和$[0,1]$形成双射.

设$A=[0,1],B=[0,1]$.我们要证明$A\times B$和$[0,1]$可以形成双射.由于$[0,1]$可以和$2^{\mathbb{N}}$形成双射,因此我们只用证明

$A\times B$可以和$2^{\mathbb{N}}$之间形成双射.w

首先易知存在从$2^{\mathbb{N}}$到$A\times B$的单射,根据Cantor-Bernstein-Schroeder定理,我们只用证明存在从$A\times B$到$2^{\mathbb{N}}$的单射.我们可以把$2^{\mathbb{N}}$看作所有0-1序列.我们下面来看这个图:

 

平面上的点和直线上的点一样多

平面上的点和直线上的点一样多平面上的点和直线上的点一样多View Code
 1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 2 <!-- Created with Inkscape (http://www.inkscape.org/) -->
 3 
 4 <svg  5    xmlns:dc="http://purl.org/dc/elements/1.1/"
 6  xmlns:cc="http://creativecommons.org/ns#"
 7  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 8  xmlns:svg="http://www.w3.org/2000/svg"
 9  xmlns="http://www.w3.org/2000/svg"
 10  xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 11  xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 12  width="744.09448819"
 13  height="1052.3622047"
 14  id="svg2"
 15  version="1.1"
 16  inkscape:version="0.48.3.1 r9886"
 17  sodipodi:docname="New document 1">
 18   <defs  19      id="defs4">
 20     <marker  21        inkscape:stockid="Arrow2Lend"
 22  orient="auto"
 23  refY="0.0"
 24  refX="0.0"
 25  id="Arrow2Lend"
 26  style="overflow:visible;">
 27       <path  28          id="path3790"
 29  style="fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round;"
 30  d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
 31  transform="scale(1.1) rotate(180) translate(1,0)" />
 32     </marker>
 33   </defs>
 34   <sodipodi:namedview  35      id="base"
 36  pagecolor="#ffffff"
 37  bordercolor="#666666"
 38  borderopacity="1.0"
 39  inkscape:pageopacity="0.0"
 40  inkscape:pageshadow="2"
 41  inkscape:zoom="0.35"
 42  inkscape:cx="357.31741"
 43  inkscape:cy="-1422.8571"
 44  inkscape:document-units="px"
 45  inkscape:current-layer="layer1"
 46  showgrid="false"
 47  inkscape:window-width="1366"
 48  inkscape:window-height="744"
 49  inkscape:window-x="0"
 50  inkscape:window-y="24"
 51  inkscape:window-maximized="1" />
 52   <metadata  53      id="metadata7">
 54     <rdf:RDF>
 55       <cc:Work  56          rdf:about="">
 57         <dc:format>image/svg+xml</dc:format>
 58         <dc:type  59            rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
 60         <dc:title></dc:title>
 61       </cc:Work>
 62     </rdf:RDF>
 63   </metadata>
 64   <g  65      inkscape:label="Layer 1"
 66  inkscape:groupmode="layer"
 67  id="layer1">
 68     <text  69        xml:space="preserve"
 70  style="font-size:81.87606049px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
 71  x="-1391.3318"
 72  y="1709.1561"
 73  id="text2985"
 74  sodipodi:linespacing="125%"><tspan  75          sodipodi:role="line"
 76  id="tspan2987"
 77  x="-1391.3318"
 78  y="1709.1561">0 1 0 1 0 1 0 0 0 1 1 0  1 1 1 1 1 0... </tspan></text>
 79     <text  80        xml:space="preserve"
 81  style="font-size:74.15922546px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
 82  x="406.93726"
 83  y="1547.5131"
 84  id="text2989"
 85  sodipodi:linespacing="125%"
 86  transform="scale(0.9054132,1.1044681)"><tspan  87          sodipodi:role="line"
 88  id="tspan2991"
 89  x="406.93726"
 90  y="1547.5131">1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1... </tspan></text>
 91     <path  92        style="fill:none;stroke:#000000;stroke-width:17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
 93  d="M -634.28571,1769.505 28.571429,2435.2193"
 94  id="path2993"
 95  inkscape:connector-curvature="0" />
 96     <path  97        style="fill:none;stroke:#000000;stroke-width:17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
 98  d="M 974.28571,1769.505 351.42857,2420.9336"
 99  id="path2995"
100  inkscape:connector-curvature="0" />
101     <text 102        xml:space="preserve"
103  style="font-size:120.69830322px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
104  x="-179.60518"
105  y="2600.8269"
106  id="text4209"
107  sodipodi:linespacing="125%"><tspan 108          sodipodi:role="line"
109  id="tspan4211"
110  x="-179.60518"
111  y="2600.8269">0 1 1 0 0 1... </tspan></text>
112   </g>
113 </svg>

 

以一种特定的方式构造从$2^{\mathbb{N}}\times 2^{\mathbb{N}}$到$2^{\mathbb{N}}$的单射是很容易的.完毕.