$\mathbb{R}^2$和$\mathbb{R}$之间可以形成双射.
由于$\mathbb{R}^2$可以和$[0,1]\times [0,1]$形成双射,而$\mathbb{R}$可以和$[0,1]$形成双射,因此我们只用证明
$[0,1]\times [0,1]$可以和$[0,1]$形成双射.
设$A=[0,1],B=[0,1]$.我们要证明$A\times B$和$[0,1]$可以形成双射.由于$[0,1]$可以和$2^{\mathbb{N}}$形成双射,因此我们只用证明
$A\times B$可以和$2^{\mathbb{N}}$之间形成双射.w
首先易知存在从$2^{\mathbb{N}}$到$A\times B$的单射,根据Cantor-Bernstein-Schroeder定理,我们只用证明存在从$A\times B$到$2^{\mathbb{N}}$的单射.我们可以把$2^{\mathbb{N}}$看作所有0-1序列.我们下面来看这个图:
View Code
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <!-- Created with Inkscape (http://www.inkscape.org/) -->
3
4 <svg 5 xmlns:dc="http://purl.org/dc/elements/1.1/"
6 xmlns:cc="http://creativecommons.org/ns#"
7 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
8 xmlns:svg="http://www.w3.org/2000/svg"
9 xmlns="http://www.w3.org/2000/svg"
10 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
11 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
12 width="744.09448819"
13 height="1052.3622047"
14 id="svg2"
15 version="1.1"
16 inkscape:version="0.48.3.1 r9886"
17 sodipodi:docname="New document 1">
18 <defs 19 id="defs4">
20 <marker 21 inkscape:stockid="Arrow2Lend"
22 orient="auto"
23 refY="0.0"
24 refX="0.0"
25 id="Arrow2Lend"
26 style="overflow:visible;">
27 <path 28 id="path3790"
29 style="fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round;"
30 d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
31 transform="scale(1.1) rotate(180) translate(1,0)" />
32 </marker>
33 </defs>
34 <sodipodi:namedview 35 id="base"
36 pagecolor="#ffffff"
37 bordercolor="#666666"
38 borderopacity="1.0"
39 inkscape:pageopacity="0.0"
40 inkscape:pageshadow="2"
41 inkscape:zoom="0.35"
42 inkscape:cx="357.31741"
43 inkscape:cy="-1422.8571"
44 inkscape:document-units="px"
45 inkscape:current-layer="layer1"
46 showgrid="false"
47 inkscape:window-width="1366"
48 inkscape:window-height="744"
49 inkscape:window-x="0"
50 inkscape:window-y="24"
51 inkscape:window-maximized="1" />
52 <metadata 53 id="metadata7">
54 <rdf:RDF>
55 <cc:Work 56 rdf:about="">
57 <dc:format>image/svg+xml</dc:format>
58 <dc:type 59 rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
60 <dc:title></dc:title>
61 </cc:Work>
62 </rdf:RDF>
63 </metadata>
64 <g 65 inkscape:label="Layer 1"
66 inkscape:groupmode="layer"
67 id="layer1">
68 <text 69 xml:space="preserve"
70 style="font-size:81.87606049px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
71 x="-1391.3318"
72 y="1709.1561"
73 id="text2985"
74 sodipodi:linespacing="125%"><tspan 75 sodipodi:role="line"
76 id="tspan2987"
77 x="-1391.3318"
78 y="1709.1561">0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 0... </tspan></text>
79 <text 80 xml:space="preserve"
81 style="font-size:74.15922546px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
82 x="406.93726"
83 y="1547.5131"
84 id="text2989"
85 sodipodi:linespacing="125%"
86 transform="scale(0.9054132,1.1044681)"><tspan 87 sodipodi:role="line"
88 id="tspan2991"
89 x="406.93726"
90 y="1547.5131">1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1... </tspan></text>
91 <path 92 style="fill:none;stroke:#000000;stroke-width:17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
93 d="M -634.28571,1769.505 28.571429,2435.2193"
94 id="path2993"
95 inkscape:connector-curvature="0" />
96 <path 97 style="fill:none;stroke:#000000;stroke-width:17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
98 d="M 974.28571,1769.505 351.42857,2420.9336"
99 id="path2995"
100 inkscape:connector-curvature="0" />
101 <text 102 xml:space="preserve"
103 style="font-size:120.69830322px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
104 x="-179.60518"
105 y="2600.8269"
106 id="text4209"
107 sodipodi:linespacing="125%"><tspan 108 sodipodi:role="line"
109 id="tspan4211"
110 x="-179.60518"
111 y="2600.8269">0 1 1 0 0 1... </tspan></text>
112 </g>
113 </svg>
以一种特定的方式构造从$2^{\mathbb{N}}\times 2^{\mathbb{N}}$到$2^{\mathbb{N}}$的单射是很容易的.完毕.