题目描述:
定义数的消除操作为选定[L,R,x],如果数的第L到第R位上的数字都大于等于x,并且这些数都相等,那么该操作是合法的(从低位到高位编号,个位是第一位,百位是第二位……),然后将这些位数上的数减x;否则就是不合法的,不能进行操作。对一个数操作最少的次数使得这个数变成0,这个操作次数称为该数的最小操作数。如:1232的最小操作数为3,一个合法解是[2,2,1],[1,3,2],[4,4,1]。
求L~R中最小操作数为k的数的个数。
例如:132,需要操作3次才能变为0。而131131 => 111131 => 111111 =>0
输入:
单组测试数据。三个整数L、R和k(1<=L<=R<=10^18,1<=k<=18)
题解:
典型数位DP
设定dp[i][j][k] 前i位下所用数字状态j花费次数时k的个数
注意这里的状态j是指 后面的放入数字能有重复效应的 状态
例如 313 花费的次数是3 但131花费次数2 两者在第二位的状态 是(3)和(1)
最后还要注意0不花费
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = , M = 2e6+, inf = 2e9, mod = 1e9+;
int d[N];
long long L,R,k,dp[][<<][],vis[][<<][];
int cal(int p,int i) {
for(int k=i+;k<=;k++) if(p&(<<k)) p^=(<<k);
return p;
}
long long dfs(int dep,int f,int p,int K)
{
if(dep<) return K==k;
if(f&&vis[dep][p][K]) return dp[dep][p][K];
if(f){
long long& ret = dp[dep][p][K];
vis[dep][p][K]=;
for(int i=;i<=;i++)
{
if(p&(<<i)||i==) {
ret+=dfs(dep-,f,cal(p,i),K);
}
else ret+=dfs(dep-,f,cal(p|(<<i),i),K+);
}
return ret;
}
else {
long long ret = ;
for(int i=;i<=d[dep];i++)
{
if(p&(<<i)||i==)
ret+=dfs(dep-,i<d[dep],cal(p,i),K);
else ret+=dfs(dep-,i<d[dep],cal(p|(<<i),i),K+);
}
return ret;
}
}
long long solve(long long x)
{
memset(dp,,sizeof(dp));
memset(vis,,sizeof(vis));
int len = ;
while(x){
d[len++] = x%;
x/=;
}
dfs(len-,,,);
}
int main(){
while(scanf("%lld%lld%lld",&L,&R,&k)!=EOF)
{
printf("%lld\n",solve(R)-solve(L-));
}
return ;
}