题目链接:
E1:http://codeforces.com/contest/1108/problem/E1
E2:http://codeforces.com/contest/1108/problem/E2
题目大意:
给你n个数,然后给你m个区间,每一个区间代表将给定的n个数这个区间内都减去1,每个区间最多使用一次。然后问你使用哪些区间能够使得这n个数中最大数和最小的差值最大?
首先对于E1:这么小的数据不暴力搞啥??直接问枚举就完事了,每一次枚举的时候保持一个数不变,假设当前的数是最大的,然后其他的只要是不包含这个数的区间,都减去,这样就能让最小的那个位置尽可能的小了。
AC代码:
#include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn = +;
int a[maxn],b[maxn],sto[maxn];
struct node
{
int le;
int ri;
} q[maxn];
int main()
{
int n,m;
scanf("%d %d",&n,&m);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
for(int i=; i<=m; i++)
{
scanf("%d %d",&q[i].le,&q[i].ri);
}
int maxx=-inf,id=;
for(int i=; i<=n; i++)
{
int t1=-inf,t2=inf;
for(int j=; j<=n; j++)
{
b[j]=a[j];
}
for(int j=; j<=m; j++)
{
if(i>=q[j].le&&i<=q[j].ri)
continue;
for(int k=q[j].le; k<=q[j].ri; k++)
{
b[k]-=;
}
}
for(int j=; j<=n; j++)
{
t1=max(t1,b[j]);
t2=min(t2,b[j]);
}
if(t1-t2>maxx)
{
maxx=t1-t2;
id=i;
}
}
// cout<<m<<endl;
printf("%d\n",maxx);
int num=;
// cout<<1<<" "<<num<<endl;
for(int i=; i<=m; i++)
{
if(id>=q[i].le&&id<=q[i].ri)
continue;
// cout<<1<<endl;
sto[++num]=i;
}
// cout<<2<<" "<<num<<endl;
printf("%d\n",num);
for(int i=; i<=num; i++)
{
if(i==)
printf("%d",sto[i]);
else
printf(" %d",sto[i]);
}
printf("\n");
return ;
}
其次对于E2:我们可以寻找最小的数的位置,这个时候为什么不和E1一样去找最大的数的位置呢?因为我们要利用区间的性质,对于每一个节点,我们需要从第一个位置开始。
对于当枚举到第i个节点的时候,需要把包括i的区间都给整上,这个时候求一下最值之差,当枚举到第i+1个节点的时候,我们只需要把不包括第i个节点但是包括第i+1个节点的区间给整上就可以了,这样就能省去很多不必要的操作了。
AC代码:
#include<bits/stdc++.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
# define lson l,m,rt<<
# define rson m+,r,rt<<|
const int maxn = 1e5+;
int minn[maxn<<],maxx[maxn<<],dif[maxn<<];
int lazy[maxn<<];
struct node
{
int le;
int ri;
} edge[+];
int sto[maxn];
int ans1,ans2;
vector<int>q1[maxn],q2[maxn];
void up(int rt)
{
minn[rt]=min(minn[rt<<],minn[rt<<|]);
maxx[rt]=max(maxx[rt<<],maxx[rt<<|]);
dif[rt]=maxx[rt]-minn[rt];// 本来查找最值得差的时候是直接询问到底部的,加了这个就不需要了,学到了!!
}
void build(int l,int r,int rt)
{
if(l==r)
{
int tmp;
scanf("%d",&tmp);
minn[rt]=tmp;
maxx[rt]=tmp;
return ;
}
int m=(l+r)>>;
build(lson);
build(rson);
up(rt);
}
void down(int rt)
{
if(lazy[rt])
{
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
minn[rt<<]+=lazy[rt];
minn[rt<<|]+=lazy[rt];
maxx[rt<<]+=lazy[rt];
maxx[rt<<|]+=lazy[rt];
lazy[rt]=;
}
}
void update(int l,int r,int rt,int L,int R,int p)
{
if(L<=l&&R>=r)
{
minn[rt]+=p;
maxx[rt]+=p;
lazy[rt]+=p;
return ;
}
down(rt);
int m=(l+r)>>;
if(L<=m)
update(lson,L,R,p);
if(R>m)
update(rson,L,R,p);
up(rt);
}
//int querymax(int l,int r,int rt)
//{
// if(l==r)
// {
// return maxx[rt];
// }
// int t1;
// down(rt);
// int m=(l+r)>>1;
// if(l<=m)querymax(lson);
// if(r>m)querymax(rson);
// up(rt);
//}
//void querymin(int l,int r,int rt)
//{
// if(l==r)
// {
// ans2=min(ans2,minn[rt]);
// return ;
// }
// down(rt);
// int m=(l+r)>>1;
// querymin(lson);
// querymin(rson);
// up(rt);
//}
int main()
{
int n,m,tmp,len;
scanf("%d %d",&n,&m);
build(,n,);
int ans=-inf,id=;
for(int i=; i<=m; i++)
{
scanf("%d %d",&edge[i].le,&edge[i].ri);
q1[edge[i].le].push_back(i);
q2[edge[i].ri].push_back(i);
}
for(int i=; i<=n; i++)
{
len=q2[i-].size();
for(int j=; j<len; j++)
{
tmp=q2[i-][j];
update(,n,,edge[tmp].le,edge[tmp].ri,);
}
len=q1[i].size();
for(int j=; j<len; j++)
{
tmp=q1[i][j];
update(,n,,edge[tmp].le,edge[tmp].ri,-);
}
if(ans<dif[])
{
ans=dif[];
id=i;
}
}
int num=;
printf("%d\n",ans);
for(int i=; i<=m; i++)
{
if(edge[i].le<=id&&edge[i].ri>=id)
{
sto[++num]=i;
}
}
printf("%d\n",num);
for(int i=; i<=num; i++)
{
if(i==)
printf("%d",sto[i]);
else
printf(" %d",sto[i]);
}
printf("\n");
return ;
}