FCM算法的matlab程序(初步)

时间:2021-05-08 09:15:43

FCM算法的matlab程序

https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它。

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.采用iris数据库

iris_data.txt

5.1    3.5    1.4    0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5 3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
5 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3 1.4 0.1
4.3 3 1.1 0.1
5.8 4 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 1 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
5 3 1.6 0.2
5 3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
5 3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 3 1.3 0.2
5.1 3.4 1.5 0.2
5 3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
5 3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 3 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
5 3.3 1.4 0.2
7 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3 1
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
5 2 3.5 1
5.9 3 4.2 1.5
6 2.2 4 1
6.1 2.9 4.7 1.4
5.6 2.9 3.6 1.3
6.7 3.1 4.4 1.4
5.6 3 4.5 1.5
5.8 2.7 4.1 1
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 4 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 3 4.4 1.4
6.8 2.8 4.8 1.4
6.7 3 5 1.7
6 2.9 4.5 1.5
5.7 2.6 3.5 1
5.5 2.4 3.8 1.1
5.5 2.4 3.7 1
5.8 2.7 3.9 1.2
6 2.7 5.1 1.6
5.4 3 4.5 1.5
6 3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 3 4.1 1.3
5.5 2.5 4 1.3
5.5 2.6 4.4 1.2
6.1 3 4.6 1.4
5.8 2.6 4 1.2
5 2.3 3.3 1
5.6 2.7 4.2 1.3
5.7 3 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 3 1.1
5.7 2.8 4.1 1.3
6.3 3.3 6 2.5
5.8 2.7 5.1 1.9
7.1 3 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3 5.8 2.2
7.6 3 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1 2
6.4 2.7 5.3 1.9
6.8 3 5.5 2.1
5.7 2.5 5 2
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 3 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6 2.2 5 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9 2
7.7 2.8 6.7 2
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 6 1.8
6.2 2.8 4.8 1.8
6.1 3 4.9 1.8
6.4 2.8 5.6 2.1
7.2 3 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4 2
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 3 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
6 3 4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 3 5.2 2.3
6.3 2.5 5 1.9
6.5 3 5.2 2
6.2 3.4 5.4 2.3
5.9 3 5.1 1.8

2.matlab源程序

function label_1=My_FCM(K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
max_iter=100; %最大迭代次数
fitness=zeros(max_iter,1);
data=dlmread('E:\www.cnblogs.comkailugaji\data\iris\iris_data.txt');
%----------------------------------------------------------------------------------------------------
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化模糊隶属度矩阵
responsivity=rand(X_num,K); %初始化模糊隶属度矩阵,X_num*K
temp=sum(responsivity,2); %把responsivity每一行加起来,把K类加起来,N*1的矩阵
responsivity=responsivity./(temp*ones(1,K)); %保证每行(每类)加起来为1
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:max_iter
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新隶属度矩阵X_num*K
R_up=distant.^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity=R_up./(sum(R_up,2)*ones(1,K));
%[responsivity,para_miu,fitness(t)]=FuzzyCM(X,responsivity,K,alpha);
if t>1 %改成while不行
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
%iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);

3.结果

>> label_1=My_FCM(3)

label_1 =

     1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
2
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
2
2
2
2
3
2
2
2
2
2
2
3
2
2
2
2
2
3
2
3
2
3
2
2
3
2
2
2
2
2
2
3
3
2
2
2
3
2
2
2
3
2
2
2
2
2
2
3

4.注意

由于初始化模糊隶属度矩阵是随机的,所以每次出现的结果并不一样,如果答案与上述不一致,很正常,可以设置迭代次数,求精度。如有不对之处,望指正。