Intuitive one to learn about Grundy basic :)
Now every pile becomes a game, so we need to use Sprague-Grundy Theory. Calculation is quite intuitive - and if you print them out, you will find these Grundy numbers loops by 9.
def firstMissing(s):
ret = 0
while 1:
if ret not in s: break
else: ret += 1
return ret primes = [2,3,5,7,11,13]
def grundy(v):
if v <= 2: return 0 tmp = set([])
for p in primes:
if p >= v: break
else: tmp.add(grundy(v - p))
ret = firstMissing(tmp)
grundySet[v] = ret
return ret ####################
def simpleGrundy(v):
return [0,0,1,1,2,2,3,3,4][v%9] ####################
T = int(input())
for _ in range(T):
N = int(input())
A = map(int, input().split())
sg = map(simpleGrundy, A)
ret = 0
for g in sg: ret ^= g
print(['Sandy','Manasa'][ret!=0])