ava代码
- // Instantiate priority buckets
- BlockBucket bucketSingle = new BlockBucket(bytesToFree, blockSize,
- singleSize());
- BlockBucket bucketMulti = new BlockBucket(bytesToFree, blockSize,
- multiSize());
- BlockBucket bucketMemory = new BlockBucket(bytesToFree, blockSize,
- memorySize());
- // Scan entire map putting into appropriate buckets
- for(CachedBlock cachedBlock : map.values()) {
- switch(cachedBlock.getPriority()) {
- case SINGLE: {
- bucketSingle.add(cachedBlock);
- break;
- }
- case MULTI: {
- bucketMulti.add(cachedBlock);
- break;
- }
- case MEMORY: {
- bucketMemory.add(cachedBlock);
- break;
- }
- }
- }
- PriorityQueue<BlockBucket> bucketQueue =
- new PriorityQueue<BlockBucket>(3);
- bucketQueue.add(bucketSingle);
- bucketQueue.add(bucketMulti);
- bucketQueue.add(bucketMemory);
- int remainingBuckets = 3;
- long bytesFreed = 0;
- BlockBucket bucket;
- while((bucket = bucketQueue.poll()) != null) {
- long overflow = bucket.overflow();
- if(overflow > 0) {
- long bucketBytesToFree = Math.min(overflow,
- (bytesToFree - bytesFreed) / remainingBuckets);
- bytesFreed += bucket.free(bucketBytesToFree);
- }
- remainingBuckets--;
- }
hbase内部的blockcache分三个队列:single、multi以及memory,分别占用25%,50%,25%的大小。这涉及到family属性中的in-memory选项,默认是false。
设为false的话,第一次访问到该数据时,会将它写入single队列,否则写入memory队列。当再次访问该数据并且在single中读到了该数据时,single会升级为multi
这三个队列其实是在共用blockcache的资源,区别是在LRU淘汰数据时,single会优先淘汰,其次为multi,最后为memory。
所以结论有两点:
1 同一个family不会占用全部的blockcache资源
2 当某些family特别重要时,可以将它的in-memory设为true,单独使用一个缓存队列,保证cache的优先使用