Network
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 13172 | Accepted: 4774 |
题目链接:http://poj.org/problem?id=3694
Description:
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.
You are to help the administrator by reporting the number of bridges in the network after each new link is added.
Input:
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.
The last test case is followed by a line containing two zeros.
Output:
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
Sample Input:
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
Sample Output:
Case 1:
1
0 Case 2:
2
0
题意:
首先给出一个无向图,然后不断加边,每次加一条边就输出当前图中桥有多少个。
题解:
首先单独计算桥很容易,但这个加边操作有点烦人,不可能每次加条边就求次桥吧。然后我们主要想的就是新边和原图的关系。
因为原图是连通的,在原图中,我们很容易把桥求出来,并且将相应的点进行缩点(这里我用的并查集),最后的图中的边都为桥,且无向图变成了树。
那么每次新加入一条边,如果它连接的为不在一个集合中的点,那么必然会影响到从u到v简单路径上面的桥;否则就不影响。
下面关键就是求这个简单路径,由于这个题数据量较小,用个朴素的lca就行了,这里的lca没有用深度来,而是根据dfn,很好地利用了时间戳。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 1e5+,M = 2e5+;
int n,m,ans;
int head[N];
struct Edge{
int u,v,next;
}e[M<<];
int T,tot;
int dfn[N],low[N],cut[N],f[N],pa[N];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
void init(){
T=;tot=;ans=;
memset(head,-,sizeof(head));
memset(cut,,sizeof(cut));
memset(dfn,,sizeof(dfn));
memset(pa,,sizeof(pa));
for(int i=;i<=n;i++) f[i]=i;
}
int find(int x){
return f[x]==x ? x : f[x]=find(f[x]);
}
void Union(int u,int v){
int fx=find(u),fy=find(v);
if(fx!=fy) f[fx]=fy;
return ;
}
void Tarjan(int u,int pre){
dfn[u]=low[u]=++T;
int son=;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(v==pre) continue ;
if(!dfn[v]){
pa[v]=u;
Tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]){
cut[v]=;
ans++;
}else Union(u,v);
}else{
low[u]=min(low[u],dfn[v]);
}
}
}
int lca(int u,int v){
if(dfn[u]<dfn[v]) swap(u,v);
while(dfn[u]>dfn[v]){
int fx=find(u),fy=find(pa[u]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
u=pa[u];
}
while(dfn[v]>dfn[u]){
int fx=find(v),fy=find(pa[v]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
v=pa[v];
}
return ans ;
}
int main(){
int cnt = ;
while(scanf("%d%d",&n,&m)!=EOF){
if(n+m<=) break ;
cnt++;
init();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
adde(u,v);adde(v,u);
}
Tarjan(,-);
int q;
printf("Case %d:\n",cnt);
scanf("%d",&q);
while(q--){
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
}
return ;
}