Java OCR tesseract 图像智能字符识别技术 Java代码实现

时间:2022-09-24 08:54:33

接着上一篇OCR所说的,上一篇给大家介绍了tesseract 在命令行的简单用法,当然了要继承到我们的程序中,还是需要代码实现的,下面给大家分享下java实现的例子。

Java OCR tesseract 图像智能字符识别技术 Java代码实现

拿代码扫描上面的图片,然后输出结果。主要思想就是利用Java调用系统任务。

下面是核心代码:

package com.zhy.test;
import java.io.BufferedReader;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import org.jdesktop.swingx.util.OS;

public class OCRHelper
{
private final String LANG_OPTION = "-l";
private final String EOL = System.getProperty("line.separator");
/**
* 文件位置我防止在,项目同一路径
*/
private String tessPath = new File("tesseract").getAbsolutePath();

/**
* @param imageFile
* 传入的图像文件
* @param imageFormat
* 传入的图像格式
* @return 识别后的字符串
*/
public String recognizeText(File imageFile) throws Exception
{
/**
* 设置输出文件的保存的文件目录
*/
File outputFile = new File(imageFile.getParentFile(), "output");

StringBuffer strB = new StringBuffer();
List<String> cmd = new ArrayList<String>();
if (OS.isWindowsXP())
{
cmd.add(tessPath + "\\tesseract");
} else if (OS.isLinux())
{
cmd.add("tesseract");
} else
{
cmd.add(tessPath + "\\tesseract");
}
cmd.add("");
cmd.add(outputFile.getName());
cmd.add(LANG_OPTION);
// cmd.add("chi_sim");
cmd.add("eng");

ProcessBuilder pb = new ProcessBuilder();
/**
*Sets this process builder's working directory.
*/
pb.directory(imageFile.getParentFile());
cmd.set(1, imageFile.getName());
pb.command(cmd);
pb.redirectErrorStream(true);
Process process = pb.start();
// tesseract.exe 1.jpg 1 -l chi_sim
// Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim");
/**
* the exit value of the process. By convention, 0 indicates normal
* termination.
*/
// System.out.println(cmd.toString());
int w = process.waitFor();
if (w == 0)// 0代表正常退出
{
BufferedReader in = new BufferedReader(new InputStreamReader(
new FileInputStream(outputFile.getAbsolutePath() + ".txt"),
"UTF-8"));
String str;

while ((str = in.readLine()) != null)
{
strB.append(str).append(EOL);
}
in.close();
} else
{
String msg;
switch (w)
{
case 1:
msg = "Errors accessing files. There may be spaces in your image's filename.";
break;
case 29:
msg = "Cannot recognize the image or its selected region.";
break;
case 31:
msg = "Unsupported image format.";
break;
default:
msg = "Errors occurred.";
}
throw new RuntimeException(msg);
}
new File(outputFile.getAbsolutePath() + ".txt").delete();
return strB.toString().replaceAll("\\s*", "");
}
}
代码很简单,中间那部分ProcessBuilder其实就类似Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim"),大家不习惯的可以使用Runtime。

测试代码:

package com.zhy.test;import java.io.File;public class Test{	public static void main(String[] args)	{		try		{						File testDataDir = new File("testdata");			System.out.println(testDataDir.listFiles().length);			int i = 0 ; 			for(File file :testDataDir.listFiles())			{				i++ ;				String recognizeText = new OCRHelper().recognizeText(file);				System.out.print(recognizeText+"\t");				if( i % 5  == 0 )				{					System.out.println();				}			}					} catch (Exception e)		{			e.printStackTrace();		}	}}

输出结果:

Java OCR tesseract 图像智能字符识别技术 Java代码实现

对比第一张图片,是不是很完美~哈哈 ,当然了如果你只需要实现验证码的读写,那么上面就足够了。下面继续普及图像处理的知识。



-------------------------------------------------------------------我的分割线--------------------------------------------------------------------

当然了,有时候图片被扭曲或者模糊的很厉害,很不容易识别,所以下面我给大家介绍一个去噪的辅助类,绝对碉堡了,先看下效果图。

Java OCR tesseract 图像智能字符识别技术 Java代码实现

来张特写:

Java OCR tesseract 图像智能字符识别技术 Java代码实现

一个类,不依赖任何jar,把图像中的干扰线消灭了,是不是很给力,然后再拿这样的图片去识别,会不会效果更好呢,嘿嘿,大家自己实验~

代码:

package com.zhy.test;import java.awt.Color;import java.awt.image.BufferedImage;import java.io.File;import java.io.IOException;import javax.imageio.ImageIO;public class ClearImageHelper{	public static void main(String[] args) throws IOException	{				File testDataDir = new File("testdata");		final String destDir = testDataDir.getAbsolutePath()+"/tmp";		for (File file : testDataDir.listFiles())		{			cleanImage(file, destDir);		}	}	/**	 * 	 * @param sfile	 *            需要去噪的图像	 * @param destDir	 *            去噪后的图像保存地址	 * @throws IOException	 */	public static void cleanImage(File sfile, String destDir)			throws IOException	{		File destF = new File(destDir);		if (!destF.exists())		{			destF.mkdirs();		}		BufferedImage bufferedImage = ImageIO.read(sfile);		int h = bufferedImage.getHeight();		int w = bufferedImage.getWidth();		// 灰度化		int[][] gray = new int[w][h];		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				int argb = bufferedImage.getRGB(x, y);				// 图像加亮(调整亮度识别率非常高)				int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);				int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);				int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);				if (r >= 255)				{					r = 255;				}				if (g >= 255)				{					g = 255;				}				if (b >= 255)				{					b = 255;				}				gray[x][y] = (int) Math						.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)								* 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);			}		}		// 二值化		int threshold = ostu(gray, w, h);		BufferedImage binaryBufferedImage = new BufferedImage(w, h,				BufferedImage.TYPE_BYTE_BINARY);		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				if (gray[x][y] > threshold)				{					gray[x][y] |= 0x00FFFF;				} else				{					gray[x][y] &= 0xFF0000;				}				binaryBufferedImage.setRGB(x, y, gray[x][y]);			}		}		// 矩阵打印		for (int y = 0; y < h; y++)		{			for (int x = 0; x < w; x++)			{				if (isBlack(binaryBufferedImage.getRGB(x, y)))				{					System.out.print("*");				} else				{					System.out.print(" ");				}			}			System.out.println();		}		ImageIO.write(binaryBufferedImage, "jpg", new File(destDir, sfile				.getName()));	}	public static boolean isBlack(int colorInt)	{		Color color = new Color(colorInt);		if (color.getRed() + color.getGreen() + color.getBlue() <= 300)		{			return true;		}		return false;	}	public static boolean isWhite(int colorInt)	{		Color color = new Color(colorInt);		if (color.getRed() + color.getGreen() + color.getBlue() > 300)		{			return true;		}		return false;	}	public static int isBlackOrWhite(int colorInt)	{		if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)		{			return 1;		}		return 0;	}	public static int getColorBright(int colorInt)	{		Color color = new Color(colorInt);		return color.getRed() + color.getGreen() + color.getBlue();	}	public static int ostu(int[][] gray, int w, int h)	{		int[] histData = new int[w * h];		// Calculate histogram		for (int x = 0; x < w; x++)		{			for (int y = 0; y < h; y++)			{				int red = 0xFF & gray[x][y];				histData[red]++;			}		}		// Total number of pixels		int total = w * h;		float sum = 0;		for (int t = 0; t < 256; t++)			sum += t * histData[t];		float sumB = 0;		int wB = 0;		int wF = 0;		float varMax = 0;		int threshold = 0;		for (int t = 0; t < 256; t++)		{			wB += histData[t]; // Weight Background			if (wB == 0)				continue;			wF = total - wB; // Weight Foreground			if (wF == 0)				break;			sumB += (float) (t * histData[t]);			float mB = sumB / wB; // Mean Background			float mF = (sum - sumB) / wF; // Mean Foreground			// Calculate Between Class Variance			float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);			// Check if new maximum found			if (varBetween > varMax)			{				varMax = varBetween;				threshold = t;			}		}		return threshold;	}}


好了,就到这里。如果这篇文章对你有用,赞一个吧~