hrtimer:high-resolution kernel timers:
hrtimers的诞生是由于内核开发者在使用过程中发现,原始的定时器kernel/timers.c
,已经可以满足所有场景的,但是在实际的大量测试中发现还是无法满足所有场景,所以hrtimers就诞生了。这里简单介绍下关键结构体和一个应用场景,具体远离下篇博客再来分析。
1.结构体简单介绍
1.struct hrtimer
这个是高精度对象的成员变量,内核注释已经很详细了,具体细节下篇来说,这里重点关注的是function,这个是我们需要实现的方法。
/**
* struct hrtimer - the basic hrtimer structure
* @node: timerqueue node, which also manages node.expires,
* the absolute expiry time in the hrtimers internal
* representation. The time is related to the clock on
* which the timer is based. Is setup by adding
* slack to the _softexpires value. For non range timers
* identical to _softexpires.
* @_softexpires: the absolute earliest expiry time of the hrtimer.
* The time which was given as expiry time when the timer
* was armed.
* @function: timer expiry callback function
* @base: pointer to the timer base (per cpu and per clock)
* @state: state information (See bit values above)
* @start_pid: timer statistics field to store the pid of the task which
* started the timer
* @start_site: timer statistics field to store the site where the timer
* was started
* @start_comm: timer statistics field to store the name of the process which
* started the timer
*
* The hrtimer structure must be initialized by hrtimer_init()
*/
struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart (*function)(struct hrtimer *);
struct hrtimer_clock_base *base;
unsigned long state;
#ifdef CONFIG_TIMER_STATS
int start_pid;
void *start_site;
char start_comm[16];
#endif
};
2.ktime_t
这个用来表示时间,单位为纳米。在启动定时器之前,需要设定一个时间来决定何时调用回调函数。
typedef union ktime ktime_t;
/*
* ktime_t:
*
* A single 64-bit variable is used to store the hrtimers
* internal representation of time values in scalar nanoseconds. The
* design plays out best on 64-bit CPUs, where most conversions are
* NOPs and most arithmetic ktime_t operations are plain arithmetic
* operations.
*
*/
union ktime {
s64 tv64;
};
2.hrtimers应用场景
1).创建定时器对象&设置首次触发时间
最近在做一个Camera的flash驱动,该camera需要pwm来控制亮度,而硬件上该GPIO口,没有pwm功能,所以只能来模拟pwm了。
本地flash控制对象中嵌套的有hrtimer对象:
struct flash_gpio_ctrl {
struct hrtimer *flash_timer;
ktime_t kt;
int flash_level;
int IsFlash_stop;
int loop_count;
uint32_t gpio_enf;
uint32_t gpio_enm; //pwm
};
创建定时器以及启动定时器:
static void flash_pwm_start(void)
{
hrtimer_init(flash_gpio_ctrl.flash_timer,CLOCK_MONOTONIC,HRTIMER_MODE_REL);
flash_gpio_ctrl.flash_timer->function = hrtimer_handler;
flash_gpio_ctrl.kt = ktime_set(0, 10000);
hrtimer_start(flash_gpio_ctrl.flash_timer,flash_gpio_ctrl.kt,HRTIMER_MODE_REL);
pr_err("timer_start");
}
1.hrtimer_init:这个是用来创建timer定时器对象,由内核封装好了,具体细节先不用关系,只需要把定时器对象嵌套进我们定义的结构体中就行了。
2.function:这个就是回调函数指针,这里注册回调函数。
3.ktime_set(0, 10000):设置首次触发时间,这里我设置了10ms。
- 4.hrtimer_start();这里传入定时器对象,和触发时间,就开启定时器了。
2).回调函数预览
static enum hrtimer_restart hrtimer_handler(struct hrtimer *timer)
{
flash_flag = !flash_flag;
gpio_direction_output(flash_gpio_ctrl.gpio_enm, 0);
if(flash_gpio_ctrl.loop_count != 1){
if (flash_flag) {
gpio_direction_output(flash_gpio_ctrl.gpio_enm, 1);
flash_gpio_ctrl.kt = ktime_set(0, BASE_TIME * (flash_gpio_ctrl.flash_level) * 1000);
hrtimer_forward_now(flash_gpio_ctrl.flash_timer, flash_gpio_ctrl.kt);
//pr_err("pulse low level:%d",flash_gpio_ctrl.flash_level);
} else {
gpio_direction_output(flash_gpio_ctrl.gpio_enm, 0);
flash_gpio_ctrl.kt = ktime_set(0, 50000 - (BASE_TIME * (flash_gpio_ctrl.flash_level) * 1000));
hrtimer_forward_now(flash_gpio_ctrl.flash_timer, flash_gpio_ctrl.kt);
//pr_err("pulse high levle");
}
flash_gpio_ctrl.loop_count--;
pr_err("flash_timer out\n");
return HRTIMER_RESTART;
}else{
flash_gpio_ctrl.loop_count--;
return HRTIMER_NORESTART;
}
}
1.loop_count:这里我设置的是一个循环触发的定时器,所以为了不让定时器无休止的进行下去,设置一个触发次数。次数减为0,则推出定时器。
2.HRTIMER_RESTART:这个返回值告诉定时器核心,这里是定时器会重新触发,而且上面又重新设置了触发的时间。
3.hrtimer_forward_now:重新设置定时器触发的时间。
至此定时器就已经运行起来了,每割一定时间都会触发回调函数。而且产生的pwm能使flash亮起来,但是由于占空比不是很准确,所以flash亮度有些不稳定。(此外还有一种方法是启动一个线程,来同步产生控制信号)