BZOJ5104 Fib数列(二次剩余+BSGS)

时间:2020-12-08 08:52:47

  5在1e9+9下有二次剩余,那么fib的通项公式就有用了。

  BZOJ5104 Fib数列(二次剩余+BSGS)已知Fn,求n。注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(-1)n·t-1。同乘t并移项,可得t2-√5·Fn·t-(-1)n=0。讨论n的奇偶性,BSGS求二次剩余大力解方程即可。用BSGS求二次剩余是非常简单的,求出其以原根为底的离散对数即可。

  注意二次剩余有正负两解,但似乎代进去正根(即√gk=gk/2)就行了,不太明白。以及题目要求最小解,BSGS的时候注意顺序。还有BSGS不一定有解,我也不知道我在BSGS里面assert了半天是在干啥。调了一年惨炸了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#include<cassert>
using namespace std;
#define ll long long
#define P 1000000009
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,b,g,v,ans=P;
map<int,int> f;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
int BSGS(int g,int k)
{
f.clear();
int block=sqrt(P),t=ksm(g,block),x=,ans=-;g=inv(g);
for (int i=;i<block;i++)
{
if (f.find(1ll*x*k%P)==f.end()) f[1ll*x*k%P]=i;
x=1ll*x*g%P;
}
x=;
for (int i=;i<P;i+=block)
{
if (f.find(x)!=f.end()) {ans=f[x]+i;break;}
x=1ll*x*t%P;
}
return ans;
}
int SQRT(int n)
{
int k=BSGS(g,n);
if (k==-||k&) return -;
return ksm(g,k>>);
}
void solve(int c,int op,int op2)
{
int delta=SQRT(((1ll*b*b-4ll*c)%P+P)%P);
if (delta==-) return;
delta=(P+op2*delta)%P;
int ans1=1ll*((delta-b)%P+P)%P*inv()%P,ans2=1ll*((-delta-b)%P+P)*inv()%P;
ans1=BSGS(v,ans1),ans2=BSGS(v,ans2);
if ((ans1&)==op&&ans1>) ans=min(ans,ans1);
if ((ans2&)==op&&ans2>) ans=min(ans,ans2);
}
int fib(int n)
{
struct matrix
{
int n,a[][];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<;j++)
for (int k=;k<;k++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j])%P;
return c;
}
}f,a;
f.n=;f.a[][]=,f.a[][]=;
a.n=;a.a[][]=,a.a[][]=a.a[][]=a.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
return f.a[][];
}
void work(int sqrt5)
{
b=(P-1ll*sqrt5*n%P)%P;
v=1ll*(sqrt5+)*inv()%P;
solve(P-,,),solve(,,);
//solve(P-1,0,-1),solve(1,1,-1);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5104.in","r",stdin);
freopen("bzoj5104.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
/*for (int i=2;;i++)
{
bool flag=1;
for (int j=2;j*j<P;j++)
if ((P-1)%j==0)
{
if (ksm(i,j)==1) {flag=0;break;}
if (ksm(i,(P-1)/j)==1) {flag=0;break;}
}
if (flag) {g=i;break;}
}*/
g=;
n=read();
work(SQRT());//,work(P-SQRT(5));
if (ans==P) cout<<-;else assert(fib(ans)==n),cout<<ans;
return ;
}