1 通用开发步骤
创建java工程
引入相应的hadoop相关jar
share/hadoop/mapreduce下面的全部jar
share/hadoop/common/hadoop-common-2.7.1.jar
share/hadoop/common/lib全部jar
编写mapreduce程序
导出为jar包
将jar包拷贝到hadoop集群环境上
2 wordcount案例
用pig客户端将文件上传到HDFS
grunt> copyFromLocal /usr/local/input.txt /input
grunt> cat /input
hello
world
hadoop
hbase
hive
hadoop
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.examples.WordCount.IntSumReducer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class WordCountMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
protected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()){
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class WordCountReduce
extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val: values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length != 2){
System.out.println("Usage:wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf,"wodr count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)? 0 :1);
}
}
运行并查看结果
root@localhost hadoop-2.7.1]# bin/hadoop jar /usr/local/wordcount.jar WordCount /input /output
grunt> cat /output
hadoop 2
hbase 1
hello 1
hive 1
world 1