目录:
一、什么是Flume?
1)flume的特点
2)flume的可靠性
3)flume的可恢复性
4)flume 的 一些核心概念
二、flume的官方网站在哪里?
三、在哪里下载?
四、如何安装?
五、flume的案例
1)案例1:Avro
2)案例2:Spool
3)案例3:Exec
4)案例4:Syslogtcp
5)案例5:JSONHandler
6)案例6:Hadoop sink
7)案例7:File Roll Sink
8)案例8:Replicating Channel Selector
9)案例9:Multiplexing Channel Selector
10)案例10:Flume Sink Processors
11)案例11:Load balancing Sink Processor
12)案例12:Hbase sink
一、什么是Flume?
flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。
flume的特点:
flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
flume的可靠性
当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
flume的可恢复性:
还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。
flume的一些核心概念:
-
- Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
- Client生产数据,运行在一个独立的线程。
- Source从Client收集数据,传递给Channel。
- Sink从Channel收集数据,运行在一个独立线程。
- Channel连接 sources 和 sinks ,这个有点像一个队列。
- Events可以是日志记录、 avro 对象等。
Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:
值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以*组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:
二、flume的官方网站在哪里?
http://flume.apache.org/
三、在哪里下载?
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
四、如何安装?
1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
root@m1:
/home/hadoop/flume-1
.5.0-bin
# cp conf/flume-env.sh.template conf/flume-env.sh
root@m1:
/home/hadoop/flume-1
.5.0-bin
# vi conf/flume-env.sh
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced
# during Flume startup.
# Enviroment variables can be set here.
JAVA_HOME=
/usr/lib/jvm/java-7-oracle
# Give Flume more memory and pre-allocate, enable remote monitoring via JMX
#JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote"
# Note that the Flume conf directory is always included in the classpath.
#FLUME_CLASSPATH=""
3)验证是否安装成功
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
Flume 1.5.0
Source code repository: https:
//git-wip-us
.apache.org
/repos/asf/flume
.git
Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014
From
source
with checksum a01fe726e4380ba0c9f7a7d222db961f
root@m1:
/home/hadoop
#
出现上面的信息,表示安装成功了
五、flume的案例
1)案例1:Avro
Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
a)创建agent配置文件
root@m1:
/home/hadoop
#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
# Describe the sink
a1.sinks.k1.
type
= logger
# Use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
c)创建指定文件
root@m1:
/home/hadoop
# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
d)使用avro-client发送文件
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
f)在m1的控制台,可以看到以下信息,注意最后一行:
root@m1:
/home/hadoop/flume-1
.5.0-bin
/conf
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
Info: Sourcing environment configuration script
/home/hadoop/flume-1
.5.0-bin
/conf/flume-env
.sh
Info: Including Hadoop libraries found via (
/home/hadoop/hadoop-2
.2.0
/bin/hadoop
)
for
HDFS access
Info: Excluding
/home/hadoop/hadoop-2
.2.0
/share/hadoop/common/lib/slf4j-api-1
.7.5.jar from classpath
Info: Excluding
/home/hadoop/hadoop-2
.2.0
/share/hadoop/common/lib/slf4j-log4j12-1
.7.5.jar from classpath
...
2014-08-10 10:43:25,112 (New I
/O
worker
#1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND
2014-08-10 10:43:25,112 (New I
/O
worker
#1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED
2014-08-10 10:43:25,112 (New I
/O
worker
#1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.
2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64 hello world }
2)案例2:Spool
Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
1) 拷贝到spool目录下的文件不可以再打开编辑。
2) spool目录下不可包含相应的子目录
a)创建agent配置文件
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.
type
= spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir =
/home/hadoop/flume-1
.5.0-bin
/logs
a1.sources.r1.fileHeader =
true
# Describe the sink
a1.sinks.k1.
type
= logger
# Use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
root@m1:
/home/hadoop
# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
d)在m1的控制台,可以看到以下相关信息:
14
/08/10
11:37:13 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:13 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move
file
/home/hadoop/flume-1
.5.0-bin
/logs/spool_text
.log to
/home/hadoop/flume-1
.5.0-bin
/logs/spool_text
.log.COMPLETED
14
/08/10
11:37:14 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:14 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:14 INFO sink.LoggerSink: Event: { headers:{
file
=
/home/hadoop/flume-1
.5.0-bin
/logs/spool_text
.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31 spool test1 }
14
/08/10
11:37:15 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:15 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:16 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:16 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
14
/08/10
11:37:17 INFO
source
.SpoolDirectorySource: Spooling Directory Source runner has
shutdown
.
3)案例3:Exec
EXEC
执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容
a)创建agent配置文件
b)启动flume agent a1
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console
c)生成足够多的内容在文件里
root@m1:
/home/hadoop
# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
e)
在m1的控制台,可以看到以下信息:
2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74
exec
tail
test
}
2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74
exec
tail
test
}
2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31
exec
tail1 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32
exec
tail2 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33
exec
tail3 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34
exec
tail4 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35
exec
tail5 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36
exec
tail6 }
....
....
....
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36
exec
tail96 }
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37
exec
tail97 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38
exec
tail98 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39
exec
tail99 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30
exec
tail100 }
4)案例4:Syslogtcp
Syslogtcp
监听TCP的端口做为数据源
a)创建agent配置文件
b)启动flume agent a1
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console
c)测试产生syslog
d)在m1的控制台,可以看到以下信息:
14
/08/10
11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration
file
:
/home/hadoop/flume-1
.5.0-bin
/conf/syslog_tcp
.conf
14
/08/10
11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1
14
/08/10
11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14
/08/10
11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14
/08/10
11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration
for
agents: [a1]
14
/08/10
11:41:45 INFO node.AbstractConfigurationProvider: Creating channels
14
/08/10
11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1
type
memory
14
/08/10
11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1
14
/08/10
11:41:45 INFO
source
.DefaultSourceFactory: Creating instance of
source
r1,
type
syslogtcp
14
/08/10
11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1,
type
: logger
14
/08/10
11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]
14
/08/10
11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: {
source
:org.apache.flume.
source
.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
14
/08/10
11:41:45 INFO node.Application: Starting Channel c1
14
/08/10
11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group
for
type
: CHANNEL, name: c1: Successfully registered new MBean.
14
/08/10
11:41:45 INFO instrumentation.MonitoredCounterGroup: Component
type
: CHANNEL, name: c1 started
14
/08/10
11:41:45 INFO node.Application: Starting Sink k1
14
/08/10
11:41:45 INFO node.Application: Starting Source r1
14
/08/10
11:41:45 INFO
source
.SyslogTcpSource: Syslog TCP Source starting...
14
/08/10
11:42:15 WARN
source
.SyslogUtils: Event created from Invalid Syslog data.
14
/08/10
11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
5)案例5:JSONHandler
a)创建agent配置文件
b)启动flume agent a1
c)生成JSON 格式的POST request
d)在m1的控制台,可以看到以下信息:
6)案例6:Hadoop sink
其中关于hadoop2.2.0部分的安装部署,请参考文章《
ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署
》
a)创建agent配置文件
b)启动flume agent a1
c)测试产生syslog
d)在m1的控制台,可以看到以下信息:
e)在m1上再打开一个窗口,去hadoop上检查文件是否生成
7)案例7:File Roll Sink
a)创建agent配置文件
b)启动flume agent a1
c)测试产生log
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
8)案例8:Replicating Channel Selector
Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
这次我们需要用到m1,m2两台机器
a)在m1创建replicating_Channel_Selector
配置文件
b)在m1创建
replicating_Channel_Selector_avro
配置文件
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# Describe the sink
a1.sinks.k1.
type
= logger
# Use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
c)在m1上将2个配置文件复制到m2上一份
d)打开4个窗口,在m1和m2上同时启动两个flume agent
e)然后在m1或m2的任意一台机器上,测试产生syslog
f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
9)案例9:Multiplexing Channel Selector
a)在m1创建Multiplexing_Channel_Selector
配置文件
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# Describe/configure the source
a1.sources.r1.
type
= org.apache.flume.
source
.http.HTTPSource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.
type
= multiplexing
a1.sources.r1.selector.header =
type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
# Describe the sink
a1.sinks.k1.
type
= avro
a1.sinks.k1.channel = c1
a1.sinks.k1.
hostname
= m1
a1.sinks.k1.port = 5555
a1.sinks.k2.
type
= avro
a1.sinks.k2.channel = c2
a1.sinks.k2.
hostname
= m2
a1.sinks.k2.port = 5555
# Use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.
type
= memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
b)在m1创建
Multiplexing_Channel_Selector_avro
配置文件
c)将2个配置文件复制到m2上一份
d)打开4个窗口,在m1和m2上同时启动两个flume agent
e)然后在m1或m2的任意一台机器上,测试产生syslog
root@m1:
/home/hadoop
# curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]'http://localhost:5140
f)在m1的sink窗口,可以看到以下信息:
14
/08/10
14:32:21 INFO node.Application: Starting Sink k1
14
/08/10
14:32:21 INFO node.Application: Starting Source r1
14
/08/10
14:32:21 INFO
source
.AvroSource: Starting Avro
source
r1: { bindAddress: 0.0.0.0, port: 5555 }...
14
/08/10
14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group
for
type
: SOURCE, name: r1: Successfully registered new MBean.
14
/08/10
14:32:21 INFO instrumentation.MonitoredCounterGroup: Component
type
: SOURCE, name: r1 started
14
/08/10
14:32:21 INFO
source
.AvroSource: Avro
source
r1 started.
14
/08/10
14:32:36 INFO ipc.NettyServer: [
id
: 0xcf00eea6,
/192
.168.1.50:35916 =>
/192
.168.1.50:5555] OPEN
14
/08/10
14:32:36 INFO ipc.NettyServer: [
id
: 0xcf00eea6,
/192
.168.1.50:35916 =>
/192
.168.1.50:5555] BOUND:
/192
.168.1.50:5555
14
/08/10
14:32:36 INFO ipc.NettyServer: [
id
: 0xcf00eea6,
/192
.168.1.50:35916 =>
/192
.168.1.50:5555] CONNECTED:
/192
.168.1.50:35916
14
/08/10
14:32:44 INFO ipc.NettyServer: [
id
: 0x432f5468,
/192
.168.1.51:46945 =>
/192
.168.1.50:5555] OPEN
14
/08/10
14:32:44 INFO ipc.NettyServer: [
id
: 0x432f5468,
/192
.168.1.51:46945 =>
/192
.168.1.50:5555] BOUND:
/192
.168.1.50:5555
14
/08/10
14:32:44 INFO ipc.NettyServer: [
id
: 0x432f5468,
/192
.168.1.51:46945 =>
/192
.168.1.50:5555] CONNECTED:
/192
.168.1.51:46945
14
/08/10
14:34:11 INFO sink.LoggerSink: Event: { headers:{
type
=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 }
14
/08/10
14:34:57 INFO sink.LoggerSink: Event: { headers:{
type
=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33 idoall_TEST3 }
g)
在m2的sink窗口,可以看到以下信息:
可以看到,根据header中不同的条件分布到不同的channel上
10)案例10:Flume Sink Processors
failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。
a)在m1创建Flume_Sink_Processors
配置文件
b)在m1创建
Flume_Sink_Processors_avro
配置文件
c)将2个配置文件复制到m2上一份
d)打开4个窗口,在m1和m2上同时启动两个flume agent
e)然后在m1或m2的任意一台机器上,测试产生log
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据
:
root@m1:
/home/hadoop
# echo "idoall.org test2 failover" | nc localhost 5140
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据
:
i)我们再在m2的sink窗口中,启动sink:
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
j)输入两批测试数据:
root@m1:
/home/hadoop
# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
11)案例11:Load balancing Sink Processor
load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。
a)在m1创建Load_balancing_Sink_Processors
配置文件
b)在m1创建Load_balancing_Sink_Processors_avro
配置文件
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# Describe the sink
a1.sinks.k1.
type
= logger
# Use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
c)将2个配置文件复制到m2上一份
d)打开4个窗口,在m1和m2上同时启动两个flume agent
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
f)在m1的sink窗口,可以看到以下信息:
g)
在m2的sink窗口,可以看到以下信息:
说明轮询模式起到了作用。
12)案例12:Hbase sink
b)然后将以下文件复制到flume中:
14
/08/10
15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
14
/08/10
15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
c)确保test_idoall_org表在hbase中已经存在,
test_idoall_org表的格式以及字段请参考
《
ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署
》
中关于hbase部分的建表代码。
d)在m1创建hbase_simple
配置文件
e)启动flume agent
f)测试产生syslog
g)这时登录到hbase中,可以发现新数据已经插入
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
这篇文章做为一个笔记,希望能够对刚入门的同学起到帮助作用。