区间gcd问题 HDU 5869 离线+树状数组

时间:2021-11-03 08:23:11

题目大意:长度n的序列, m个询问区间[L, R], 问区间内的所有子段的不同GCD值有多少种. 子段就是表示是要连续的a[]

思路:固定右端点,预处理出所有的gcd,每次都和i-1的gcd比较,然后不断放入gcd即可。

然后就是树状数组的更新,枚举右端点即可。然后我们知道,大区间不如小区间来的实惠,所以我们每次有重复gcd出现的时候,都要把大区间更换成小区间即可

下午脑子有点不清楚。。。2333看别人的博客蒙了好久

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
/*
先总体说一下思路:求出区间的gcd,再对右进行排序,再枚举右端即可
*/
const int maxn = 1e5 + ;
int tree[maxn], a[maxn], pre[maxn * ], ans[maxn];
int n, q;
vector<pair<int, int> >qq[maxn], v[maxn]; int lowbit(int x) {return x & -x;}
int gcd(int a, int b){
return b == ? a : gcd(b, a % b);
} void update(int x, int val){
for (int i = x; i <= n; i += lowbit(i)){
tree[i] += val;
}
} int sum(int x){
int ans = ;
for (int i = x; i > ; i -= lowbit(i)) ans += tree[i];
return ans;
} void solve(){
memset(pre, , sizeof(pre));
memset(tree, , sizeof(tree)); for (int i = ; i <= n; i++){
int len = v[i].size();
for (int j = ; j < len; j++){
pair<int, int> g = v[i][j];
if (pre[g.first]) update(pre[g.first], -);
pre[g.first] = g.second;
update(g.second, );
}
len = qq[i].size();
for (int j = ; j < len; j++){
pair<int, int> p = qq[i][j];
ans[p.second] = sum(i) - sum(p.first - );
}
}
for (int i = ; i <= q; i++){
printf("%d\n", ans[i]);
}
} int main(){
while (scanf("%d%d", &n, &q) == ){
for (int i = ; i <= n; i++){
scanf("%d", a + i);
v[i].clear();
qq[i].clear();
}
for (int i = ; i <= n; i++){
int len = v[i - ].size();
int val = a[i], pos = i;
for (int j = ; j < len; j++){
pair<int, int> p = v[i - ][j];
int g = gcd(p.first, val);
if (g != val) {
v[i].pb(mk(val, pos));///要优先知道那一个区间里面的gcd
val = g;
pos = p.second;
}
}
v[i].pb(mk(val, pos));
}
/*
for (int i = 1; i <= n; i++){
int len = v[i].size();
for (int j = 0; j < len; j++){
printf("%d&%d ", v[i][j].first, v[i][j].second);
}
printf("\n");
}
*/
for (int i = ; i <= q; i++){
int l, r; scanf("%d%d", &l, &r);
qq[r].pb(mk(l, i));
}
solve();
}
return ;
}