LEETCODE —— Unique Binary Search Trees [动态规划]

时间:2021-10-28 08:12:31

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

Tree Dynamic Programming

 
 
如果集合为空,只有一种BST,即空树,
UniqueTrees[0] =1

如果集合仅有一个元素,只有一种BST,即为单个节点
UniqueTrees[1] = 1

 

UniqueTrees[2] = UniqueTrees[0] * UniqueTrees[1]   (1为根的情况)
                  + UniqueTrees[1] * UniqueTrees[0]  (2为根的情况。

再看一遍三个元素的数组,可以发现BST的取值方式如下:
UniqueTrees[3] = UniqueTrees[0]*UniqueTrees[2]  (1为根的情况)
               + UniqueTrees[1]*UniqueTrees[1]  (2为根的情况)
               + UniqueTrees[2]*UniqueTrees[0]  (3为根的情况)

所以,由此观察,可以得出UniqueTrees的递推公式为
UniqueTrees[i] = ∑ UniqueTrees[0...k] * [i-1-k]     k取值范围 0<= k <=(i-1)

 
 
'''
Created on Nov 13, 2014
 
@author: ScottGu<gu.kai.66@gmail.com, kai.gu@live.com>
'''
class Solution :
    # @return an integer
    def numTrees( self , n):
        uniqueTrees={}
        uniqueTrees[ 0 ]=1
        uniqueTrees[ 1 ]=1
 
        for cnt in range( 2, n+ 1 ):
            uniqueTrees[cnt]= 0
            for k in range( 0, cnt):
                uniqueTrees[cnt]+=uniqueTrees[k]*uniqueTrees[cnt- 1 -k]
 
        return uniqueTrees[n]
       
       
if __name__ == '__main__' :
    sl=Solution()
    print sl.numTrees( 0 ), 0
    print sl.numTrees( 1 ), 1
    print sl.numTrees( 2 ), 2
    print sl.numTrees( 3 ), 3
    print sl.numTrees( 4 ), 4
    print sl.numTrees( 5 ), 5