/* 实验内容:建立一个二维数组类Douary,使该类中有以下数据成员、成员函数及友员函数,完成矩阵的输入、输出、加、减、相等判断等操作。 * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件名称:矩阵的输入、输出、加、减、相等判断 * 作 者: 薛广晨 * 完成日期: 2012 年 4 月 15 日 * 版 本号: x1.0 */ //【任务4】建立一个二维数组类Douary,使该类中有以下数据成员、成员函数及友员函数,完成矩阵的输入、输出、加、减、相等判断等操作。 #include <iostream> using namespace std; class Douary { public: Douary(int m, int n);//构造函数:用于建立动态数组存放m行n列的二维数组(矩阵)元素,并将该数组元素初始化为 ~Douary(); //析构函数:用于释放动态数组所占用的存储空间。 friend istream &operator>>(istream &input, Douary &d);//重载运算符“>>”输入二维数组,其中d为Dousry类对象; friend ostream &operator<<(ostream &output, Douary &d);//重载运算符“<<”以m行n列矩阵的形式输出二维数组,其中d为Douary类对象。 friend Douary &operator+(const Douary &d1,const Douary &d2);//两个矩阵相加,规则:对应位置上的元素相加 friend Douary &operator-(const Douary &d1,const Douary &d2);//两个矩阵相减,规则:对应位置上的元素相减 bool operator==(const Douary &d);//判断两个矩阵是否相等,即对应位置上的所有元素是否相等 private: int ** Array; //Array 为动态数组指针。 int row; //row 为二维数组的行数。 int col; //col 为二维数组的列数。 }; Douary :: Douary(int m, int n) //构造函数:用于建立动态数组存放m行n列的二维数组(矩阵)元素,并将该数组元素初始化为; { row = m; col = n; if(m != 0 && n!= 0) { Array = new int *[row]; for (int i = 0; i < row; i++) { Array[i] = new int[col]; } } else Array = NULL; } Douary :: ~Douary() { if (Array != NULL) { for (int i = 0; i < row; i++) { delete Array[i]; } delete[] Array; Array = NULL; } } istream &operator>>(istream &input, Douary &d)//重载运算符“>>”输入二维数组,其中d为Douary类对象; { //input >> d.row >> d.col; if(d.row != 0 && d.col != 0) { int i,j; d.Array = new int *[d.row]; for (i = 0; i < d.row; i++) { d.Array[i] = new int[d.col]; } for (i = 0; i < d.row; ++i) for(j = 0; j < d.col; ++j) { input >> d.Array[i][j]; } } else d.Array = NULL; return input; } ostream &operator<<(ostream &output, Douary &d)//重载运算符“<<”以m行n列矩阵的形式输出二维数组,其中d为Douary类对象。 { output << d.row << '/' << d.col << endl; if (d.row != 0 && d.col != 0) { int i,j; for(i = 0; i < d.row; ++i) { for (j = 0; j < d.col; ++j) output << d.Array[i][j] << " "; output << endl; } } return output; } Douary &operator +(const Douary &d1, const Douary &d2)//两个矩阵相加,规则:对应位置上的元素相加 { Douary *p = new Douary(0,0); if (d1.row == d2.row && d1.col == d2.col) { int i, j; p -> row = d2.row; p -> col = d2.col; p -> Array = new int *[d1.row]; for (i = 0; i < d1.row; i++) { p -> Array[i] = new int[d1.col]; } for (i = 0; i < d2.row; ++i) for(j = 0; j < d2.col; ++j) { p -> Array[i][j] = d1.Array[i][j] + d2.Array[i][j]; } } else { cout << "不能构成矩阵!" << endl; } return *p; } Douary &operator-(const Douary &d1, const Douary &d2)//两个矩阵相减,规则:对应位置上的元素相减 { Douary *p = new Douary(0, 0); if (d1.row == d2.row && d1.col == d2.col) { int i, j; p -> row = d2.row; p -> col = d2.col; p -> Array = new int *[d1.row]; for (i = 0; i < d1.row; i++) { p -> Array[i] = new int[d1.col]; } for (i = 0; i < d2.row; ++i) for(j = 0; j < d2.col; ++j) { p -> Array[i][j] = d1.Array[i][j] - d2.Array[i][j]; } } else { cout << "不能构成矩阵!" << endl; } return *p; } bool Douary::operator==(const Douary &d)//判断两个矩阵是否相等,即对应位置上的所有元素是否相等 { bool b = false; if (row == d.row && col == d.col) { int i,j; for(i = 0; i < row;++i) for(j = 0; j < col; ++j) if(d.Array[i][j] != Array[i][j]) return false; b = true; } return b; } int main() { Douary d1(2, 3), d2(2, 3); cout << "输入d1:" << endl; cin >> d1; cout << "输入d2:"<<endl; cin >> d2; cout << "d1=" << endl << d1; cout << "d2=" << endl << d2; cout << "d1+d2=" << endl << (d1 + d2); cout << "d1-d2=" << endl << (d1 - d2); cout << "d1" << ((d1 == d2) ? "==" : "!=") << "d2" << endl; system("pause"); return 0; }
上机感言:这个题有难度,有挑战性,就是数组的地方比较难