C++拷贝构造函数具体解释

时间:2022-05-10 07:59:16

一. 什么是拷贝构造函数

首先对于普通类型的对象来说,它们之间的复制是非常easy的,比如:

int a = 100;
int b = a;

而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量。

以下看一个类对象拷贝的简单样例。

#include <iostream>
using namespace std;

class CExample {
private:
 int a;
public:
//构造函数
 CExample(int b)
 { a = b;}

//一般函数
 void Show ()
 {
cout<<a<<endl;
}
};

int main()
{
 CExample A(100);
 CExample B = A; //注意这里的对象初始化要调用拷贝构造函数,而非赋值
  B.Show ();
 return 0;
}

执行程序,屏幕输出100。从以上代码的执行结果能够看出,系统为对象 B 分配了内存并完毕了与对象 A 的复制过程。就类对象而言,同样类型的类对象是通过拷贝构造函数来完毕整个复制过程的。

以下举例说明拷贝构造函数的工作过程。

#include <iostream>
using namespace std;

class CExample {
private:
int a;
public:
//构造函数
CExample(int b)
{ a = b;}

//拷贝构造函数
CExample(const CExample& C)
{
a = C.a;
}

//一般函数
void Show ()
{
cout<<a<<endl;
}
};

int main()
{
CExample A(100);
CExample B = A; // CExample B(A); 也是一样的
B.Show ();
return 0;
}

CExample(const CExample& C) 就是我们自己定义的拷贝构造函数。可见,拷贝构造函数是一种特殊的构造函数,函数的名称必须和类名称一致,它必须的一个參数是本类型的一个引用变量

二. 拷贝构造函数的调用时机

在C++中,以下三种对象须要调用拷贝构造函数!

1. 对象以值传递的方式传入函数參数

class CExample
{
private:
int a;

public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
}

//拷贝构造
CExample(const CExample& C)
{
a = C.a;
cout<<"copy"<<endl;
}

//析构函数
~CExample()
{
cout<< "delete: "<<a<<endl;
}

void Show ()
{
cout<<a<<endl;
}
};

//全局函数,传入的是对象
void g_Fun(CExample C)
{
cout<<"test"<<endl;
}

int main()
{
CExample test(1);
//传入对象
g_Fun(test);

return 0;
}

调用g_Fun()时,会产生下面几个重要步骤:

(1).test对象传入形參时,会先会产生一个暂时变量,就叫 C 吧。

(2).然后调用拷贝构造函数把test的值给C。 整个这两个步骤有点像:CExample C(test);

(3).等g_Fun()运行完后, 析构掉 C 对象。

2. 对象以值传递的方式从函数返回

class CExample
{
private:
int a;

public:
//构造函数
CExample(int b)
{
a = b;
}

//拷贝构造
CExample(const CExample& C)
{
a = C.a;
cout<<"copy"<<endl;
}

void Show ()
{
cout<<a<<endl;
}
};

//全局函数
CExample g_Fun()
{
CExample temp(0);
return temp;
}

int main()
{
g_Fun();
return 0;
}

当g_Fun()函数运行到return时,会产生下面几个重要步骤:

(1). 先会产生一个暂时变量,就叫XXXX吧。

(2). 然后调用拷贝构造函数把temp的值给XXXX。整个这两个步骤有点像:CExample XXXX(temp);

(3). 在函数运行到最后先析构temp局部变量。

(4). 等g_Fun()运行完后再析构掉XXXX对象。

3. 对象须要通过另外一个对象进行初始化;

CExample A(100);
CExample B = A;
// CExample B(A);

后两句都会调用拷贝构造函数。

三. 浅拷贝和深拷贝

1. 默认拷贝构造函数

非常多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数參数或者函数返回对象都能非常好的进行,这是由于编译器会给我们自己主动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数非常easy,只使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有下面形式:

Rect::Rect(const Rect& r)
{
width = r.width;
height = r.height;


    当然,以上代码不用我们编写,编译器会为我们自己主动生成。可是假设觉得这样就能够解决对象的复制问题,那就错了,让我们来考虑下面一段代码:

class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
};

int Rect::count = 0; // 初始化计数器

int main()
{
Rect rect1;
cout<<"The count of Rect: "<<Rect::getCount()<<endl;

Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
cout<<"The count of Rect: "<<Rect::getCount()<<endl;

return 0;
}

  这段代码对前面的类,增加了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,依照理解,此时应该有两个对象存在,但实际程序执行时,输出的都是1,反应出仅仅有1个对象。此外,在销毁对象时,因为会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。

说白了,就是拷贝构造函数没有处理静态数据成员。

出现这些问题最根本就在于在复制对象时,计数器没有递增,我们又一次编写拷贝构造函数,例如以下:

class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
Rect(const Rect& r) // 拷贝构造函数
{
width = r.width;
height = r.height;
count++; // 计数器加1
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
};

2. 浅拷贝

所谓浅拷贝,指的是在对象复制时,仅仅对对象中的数据成员进行简单的赋值,默认拷贝构造函数运行的也是浅拷贝。大多情况下“浅拷贝”已经能非常好地工作了,可是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑例如以下一段代码:

class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int(100);
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
};

int main()
{
Rect rect1;
Rect rect2(rect1); // 复制对象
return 0;
}

在这段代码执行结束之前,会出现一个执行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:

在执行定义rect1对象后,因为在构造函数中有一个动态分配的语句,因此执行后的内存情况大致例如以下:

C++拷贝构造函数具体解释

在使用rect1复制rect2时,因为运行的是浅拷贝,仅仅是将成员的值进行赋值,这时
rect1.p = rect2.p,也即这两个指针指向了堆里的同一个空间,例如以下图所看到的:

C++拷贝构造函数具体解释

当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们须要的不是两个p有同样的值,而是两个p指向的空间有同样的值,解决的方法就是使用“深拷贝”。

3. 深拷贝

在“深拷贝”的情况下,对于对象中动态成员,就不能只简单地赋值了,而应该又一次动态分配空间,如上面的样例就应该依照例如以下的方式进行处理:

class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int(100);
}
Rect(const Rect& r)
{
width = r.width;
height = r.height;
p = new int; // 为新对象又一次动态分配空间
*p = *(r.p);
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
};

此时,在完毕对象的复制后,内存的一个大致情况例如以下:

C++拷贝构造函数具体解释

此时rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有同样的内容,这就是所谓的“深拷贝”。

3. 防止默认拷贝发生

通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧能够防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,假设用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而能够避免按值传递或返回对象。

// 防止按值传递
class CExample
{
private:
int a;

public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
}

private:
//拷贝构造,仅仅是声明
CExample(const CExample& C);

public:
~CExample()
{
cout<< "delete: "<<a<<endl;
}

void Show ()
{
cout<<a<<endl;
}
};

//全局函数
void g_Fun(CExample C)
{
cout<<"test"<<endl;
}

int main()
{
CExample test(1);
//g_Fun(test); 按值传递将出错

return 0;
}

四. 拷贝构造函数的几个细节

1. 拷贝构造函数里能调用private成员变量吗?

解答:
这个问题是在网上见的,当时一下子有点晕。其时从名子我们就知道拷贝构造函数其时就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。

2. 下面函数哪个是拷贝构造函数,为什么?

X::X(const X&);
X::X(X);
X::X(X&, int a=1);
X::X(X&, int a=1, int b=2);

解答:对于一个类X, 假设一个构造函数的第一个參数是下列之中的一个:

a) X&

b) const X&

c) volatile X&

d) const volatile X&

且没有其它參数或其它參数都有默认值,那么这个函数是拷贝构造函数.

X::X(const X&); //是拷贝构造函数
X::X(X&, int=1); //是拷贝构造函数
X::X(X&, int a=1, int b=2); //当然也是拷贝构造函数

3. 一个类中能够存在多于一个的拷贝构造函数吗?

解答:
类中能够存在超过一个拷贝构造函数。

class X {
public:
X(const X&); // const 的拷贝构造
X(X&); // 非const的拷贝构造
};


注意,假设一个类中仅仅存在一个參数为 X& 的拷贝构造函数,那么就不能使用const X或volatile X的对象实行拷贝初始化.

class X {
public:
X();
X(X&);
};

const X cx;
X x = cx; // error


假设一个类中未定义拷贝构造函数,那么编译器会自己主动产生一个默认的拷贝构造函数。

这个默认的參数可能为 X::X(const X&)或
X::X(X&),由编译器依据上下文决定选择哪一个。