http://acm.hdu.edu.cn/showproblem.php?pid=4747
题意:
我们定义mex(l,r)表示一个序列a[l]....a[r]中没有出现过得最小的非负整数, 然后我们给出一个长度为n的序列,求他所有的连续的子序列的mex(l,r)的和。
思路:
首先因为n的最大值就是2*10^5 所有我们字需要考虑200000之内的数就好了,然后O(2*n)可以求出(1,1),(1,2), (1,3),(1,4) ... (1,n)来 mex是不减的。
然后我们考虑将第一个数拿走我们就能够得到(2,2),(2,3) ......(2,n) , 如何求他们?下边给出图解:
下边是粘贴别人的,感觉有个例子很好理解。
例: 1, 6,0,2,3,1,4,3
初始mex 0, 0,2,3,4,4,5,5 mex[1,r]
删除1后 0, 0,1,1,1,4,5,5 mex[2,r]
……
当删除第一个1后,红色的mex不变!,紫色的mex值变为1,橙色的mex值不变,删除点的mex置0
因此,用线段树维护一个单调不递增队列,每次求和。查找位置时用二分。线段树延时标记即可。
ps:我这里二笔了一下,题意一下大家,lazy一定要出事化为-1,因为这里面有置0的操作。我因此wa好多次。。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue> #define CL(arr, val) memset(arr, val, sizeof(arr)) #define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0)
#define ll __int64
#define L(x) (x) << 1
#define R(x) (x) << 1 | 1
#define MID(l, r) (l + r) >> 1
#define Min(x, y) (x) < (y) ? (x) : (y)
#define Max(x, y) (x) < (y) ? (y) : (x)
#define E(x) (1 << (x))
#define iabs(x) (x) < 0 ? -(x) : (x)
#define OUT(x) printf("%I64d\n", x)
#define keyTree (chd[chd[root][1]][0])
#define Read() freopen("din.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout); #define M 100007
#define N 200017 using namespace std; int dx[4]={-1,1,0,0};
int dy[4]={0,0,-1,1}; const int inf = 0x7f7f7f7f;
const int mod = 1000000007; const double eps = 1e-8; int mex[N],a[N],next[N];
int vis[N];
ll val[4*N], lz[4*N];
int n; void pushup(int rt)
{
val[rt] = val[rt<<1] + val[rt<<1|1];
}
void pushdown(int rt,int m)
{
if (lz[rt] != -1)
{
lz[rt<<1] = lz[rt<<1|1] = lz[rt];
val[rt<<1] = lz[rt] * (m - (m>>1));
val[rt<<1|1] = lz[rt] * (m>>1);
lz[rt] = -1;
}
}
void build(int l, int r, int rt)
{
lz[rt] = -1;
val[rt] = 0;
if (l == r)
{
val[rt] = mex[l];
return ;
}
int m = (l + r) >> 1;
build(lc); build(rc);
pushup(rt);
}
void update(int L, int R, ll sc, int l, int r, int rt)
{
if (l >= L && r <= R)
{
lz[rt] = sc;
val[rt] = sc*(r - l + 1);
return ;
}
pushdown(rt,r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L,R,sc,lc);
if (R > m) update(L,R,sc,rc);
pushup(rt);
}
ll query(int pos, int l,int r, int rt)
{
if (l == r) return val[rt];
int m = (l + r) >> 1;
pushdown(rt, r - l + 1);
if (pos <= m) return query(pos,lc);
else return query(pos,rc);
}
int BSR(int l, int r, int v)
{
int ans = -1;
while (l <= r)
{
int mid = (l + r) >> 1;
if (query(mid,1,n,1) > v)
{
ans = mid;
r = mid - 1;
} else l = mid + 1;
}
return ans;
}
int main()
{
while (~scanf("%d",&n))
{
if (!n) break;
CL(vis,0); CL(next,0);
for (int i = 1; i <= n; ++i)
{
scanf("%d",&a[i]);
a[i] = min(a[i],200001);
if (vis[a[i]]) next[vis[a[i]]] = i;
vis[a[i]] = i;
}
for (int i = 1; i <= n; ++i) if (!next[i]) next[i] = n + 1;
CL(vis,0); int last = 0;
for (int i = 1; i <= n; ++i)
{
vis[a[i]] = 1;
while (true)
{
if (!vis[last])
{
mex[i] = last;
break;
}
last++;
}
}
build(1,n,1); ll ans = 0;
for (int i = 1; i <= n; ++i)
{
ans += val[1];
if (i == n) continue;
int l = i + 1;
int r = next[i] - 1;
int pos = BSR(l,r,a[i]);
if (pos != -1) update(pos, r, a[i], 1, n, 1);
update(i, i, 0, 1, n, 1);
}
printf("%I64d\n",ans);
}
return 0;
}