[算法导论]红黑树实现(插入和删除) @ Python

时间:2021-02-04 07:48:18
class RBTree:
def __init__(self):
self.nil = RBTreeNode(0)
self.root = self.nil class RBTreeNode:
def __init__(self, x):
self.key = x
self.left = None
self.right = None
self.parent = None
self.color = 'black' class Solution:
def InorderTreeWalk(self, x):
if x != None:
self.InorderTreeWalk(x.left)
if x.key != 0:
print 'key:', x.key, 'parent:', x.parent.key, 'color:', x.color
self.InorderTreeWalk(x.right) def LeftRotate(self, T, x):
y = x.right
x.right = y.left
if y.left != T.nil:
y.left.parent = x
y.parent = x.parent
if x.parent == T.nil:
T.root = y
elif x == x.parent.left:
x.parent.left = y
else:
x.parent.right = y
y.left = x
x.parent = y def RightRotate(self, T, x):
y = x.left
x.left = y.right
if y.right != T.nil:
y.right.parent = x
y.parent = x.parent
if x.parent == T.nil:
T.root = y
elif x == x.parent.right:
x.parent.right = y
else:
x.parent.left = y
y.right = x
x.parent = y def RBInsert(self, T, z):
# init z
z.left = T.nil
z.right = T.nil
z.parent = T.nil y = T.nil
x = T.root
while x != T.nil:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z.parent = y
if y == T.nil:
T.root = z
elif z.key < y.key:
y.left = z
else:
y.right = z
z.left = T.nil
z.right = T.nil
z.color = 'red'
self.RBInsertFixup(T,z) def RBInsertFixup(self, T, z):
while z.parent.color == 'red':
if z.parent == z.parent.parent.left:
y = z.parent.parent.right
if y.color == 'red':
z.parent.color = 'black'
y.color = 'black'
z.parent.parent.color = 'red'
z = z.parent.parent
else:
if z == z.parent.right:
z = z.parent
self.LeftRotate(T, z)
z.parent.color = 'black'
z.parent.parent.color = 'red'
self.RightRotate(T,z.parent.parent)
else:
y = z.parent.parent.left
if y.color == 'red':
z.parent.color = 'black'
y.color = 'black'
z.parent.parent.color = 'red'
z = z.parent.parent
else:
if z == z.parent.left:
z = z.parent
self.RightRotate(T, z)
z.parent.color = 'black'
z.parent.parent.color = 'red'
self.LeftRotate(T, z.parent.parent)
T.root.color = 'black' def RBTransplant(self, T, u, v):
if u.parent == T.nil:
T.root = v
elif u == u.parent.left:
u.parent.left = v
else:
u.parent.right = v
v.parent = u.parent def RBDelete(self, T, z):
y = z
y_original_color = y.color
if z.left == T.nil:
x = z.right
self.RBTransplant(T, z, z.right)
elif z.right == T.nil:
x = z.left
self.RBTransplant(T, z, z.left)
else:
y = self.TreeMinimum(z.right)
y_original_color = y.color
x = y.right
if y.parent == z:
x.parent = y
else:
self.RBTransplant(T, y, y.right)
y.right = z.right
y.right.parent = y
self.RBTransplant(T, z, y)
y.left = z.left
y.left.parent = y
y.color = z.color
if y_original_color == 'black':
self.RBDeleteFixup(T, x) def RBDeleteFixup(self, T, x):
while x != T.root and x.color == 'black':
if x == x.parent.left:
w = x.parent.right
if w.color == 'red':
w.color = 'black'
x.parent.color = 'red'
self.LeftRotate(T, x.parent)
w = x.parent.right
if w.left.color == 'black' and w.right.color == 'black':
w.color = 'red'
x = x.parent
else:
if w.right.color == 'black':
w.left.color = 'black'
w.color = 'red'
self.RightRotate(T, w)
w = x.parent.right
w.color = x.parent.color
x.parent.color = 'black'
w.right.color = 'black'
self.LeftRotate(T, x.parent)
x = T.root
else:
w = x.parent.left
if w.color == 'red':
w.color = 'black'
x.parent.color = 'red'
self.RightRotate(T, x.parent)
w = x.parent.left
if w.right.color == 'black' and w.left.color == 'black':
w.color = 'red'
x = x.parent
else:
if w.left.color == 'black':
w.right.color = 'black'
w.color = 'red'
self.LeftRotate(T, w)
w = x.parent.left
w.color = x.parent.color
x.parent.color = 'black'
w.left.color = 'black'
self.RightRotate(T, x.parent)
x = T.root
x.color = 'black' def TreeMinimum(self, x):
while x.left != T.nil:
x = x.left
return x nodes = [11,2,14,1,7,15,5,8,4]
T = RBTree()
s = Solution()
for node in nodes:
s.RBInsert(T,RBTreeNode(node)) s.InorderTreeWalk(T.root) s.RBDelete(T,T.root)
print 'after delete'
s.InorderTreeWalk(T.root)