loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树

时间:2022-09-27 07:45:18

题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配。两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当且仅当它们的和不小于 h。

题解:先把b排序,要想能匹配,由hall定理,b的每个子集(大小为x)都至少有x条连向b,bi递增,和bi连的边也递增,那么当bi连边大于等于i时即可,所以当min(bi-i)>=0时满足条件

线性扫一遍即可,每个a二分b更新线段树即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=150000+10,maxn=50000+10,inf=0x3f3f3f3f; int mi[N<<2],lazy[N<<2],a[N],b[N];
void pushup(int rt)
{
mi[rt]=MIN(mi[rt<<1],mi[rt<<1|1]);
}
void pushdown(int rt)
{
if(lazy[rt]!=0)
{
mi[rt<<1]+=lazy[rt];
mi[rt<<1|1]+=lazy[rt];
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
}
void build(int l,int r,int rt)
{
lazy[rt]=0;
if(l==r){mi[rt]=-l;return ;}
int m=(l+r)>>1;
build(ls),build(rs);
pushup(rt);
}
void update(int L,int R,int x,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
mi[rt]+=x;
lazy[rt]+=x;
return ;
}
int m=(l+r)>>1;
pushdown(rt);
if(L<=m)update(L,R,x,ls);
if(m<R)update(L,R,x,rs);
pushup(rt);
}
int main()
{
int n,m,h;
scanf("%d%d%d",&n,&m,&h);
for(int i=1;i<=m;i++)scanf("%d",&b[i]);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(b+1,b+1+m);
build(1,m,1);
int ans=0;
for(int i=1;i<=m;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
// printf("%d %d ----\n",i,p);
if(p<=m)update(p,m,1,1,m,1);
if(mi[1]>=0)ans++;
}
for(int i=m+1;i<=n;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
if(p<=m)update(p,m,1,1,m,1);
p=lower_bound(b+1,b+1+m,h-a[i-m])-b;
if(p<=m)update(p,m,-1,1,m,1);
if(mi[1]>=0)ans++;
}
printf("%d\n",ans);
return 0;
}
/******************** ********************/