洛谷 P1031 均分纸牌【交叉模拟】

时间:2022-05-22 06:01:05

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4 堆纸牌数分别为:

①9②8③17④6

移动3次可达到目的:

从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入输出格式

输入格式:

键盘输入文件名。文件格式:

N(N 堆纸牌,1 <= N <= 100)

A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出格式:

输出至屏幕。格式为:

所有堆均达到相等时的最少移动次数。

输入输出样例

输入样例#1: 复制
4
9 8 17 6
输出样例#1: 复制
3
【分析】:

(1)计算出平均纸牌数

(2)对牌叠预处理(也可以不作处理)

(3)模拟移牌情况

(4)输出答案

因为只能移动相邻的,可以将牌少于avg的把后一个减少(avg - 前一个),计数器++;多于的同理
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
using namespace std;
int main()
{
int n,i,sum=,ans=,a[];
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
sum/=n;//平均值
for(i=;i<=n;i++)
{
if(a[i]<sum)//多了
{
ans++;
a[i+]-=(sum-a[i]);
}
else
if(a[i]>sum)//少了
{
ans++;
a[i+]+=(a[i]-sum);
}
}
printf("%d\n",ans);
return ;
}

不预处理模拟



我们可以把平均值设为0,牌数大于平均值的排堆牌数为正数,反之则为负数。

#include<bits/stdc++.h>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int a[];
const int inf = 0x3f3f3f3f;
int main()
{
int n, sum = , Min = inf, Max = -inf, cnt = ;
cin >> n;
for(int i=; i<=n; i++)
{
cin >> a[i];
sum += a[i];
}
int avg = sum / n;
for(int i=; i<=n; i++)
{
a[i] -= avg;
}
for(int i=; i<=n; i++)
{
if(a[i] == ) continue;
a[i+] = a[i+] + a[i];
cnt++;
}
cout<<cnt<<endl;
}

预处理模拟