如何分析执行计划
例1:
假设LARGE_TABLE是一个较大的表,且username列上没有索引,则运行下面的语句:
SQL> SELECT * FROM LARGE_TABLE where USERNAME = ‘TEST’;
Query Plan
-----------------------------------------
SELECT STATEMENT Optimizer=CHOOSE (Cost=1234 Card=1 Bytes=14)
TABLE ACCESS FULL LARGE_TABLE [:Q65001] [ANALYZED]
在这个例子中,TABLE ACCESS FULL LARGE_TABLE是第一个操作,意思是在LARGE_TABLE表上做全表扫描。当这个操作完成之后,产生的row source中的数据被送往下一步骤进行处理,在此例中,SELECT STATEMENT操作是这个查询语句的最后一步。
Optimizer=CHOOSE 指明这个查询的optimizer_mode,即optimizer_mode初始化参数指定的值,它并不是指语句执行时真的使用了该优化器。决定该语句使用何种优化器的唯一方法是看后面的cost部分。例如,如果给出的是下面的形式,则表明使用的是CBO优化器,此处的cost表示优化器认为该执行计划的代价:
SELECT STATEMENT Optimizer=CHOOSE (Cost=1234 Card=1 Bytes=14)
然而假如执行计划中给出的是类似下面的信息,则表明是使用RBO优化器,因为cost部分的值为空,或者压根就没有cost部分。
SELECT STATEMENT Optimizer=CHOOSE Cost=
SELECT STATEMENT Optimizer=CHOOSE
这样我们从Optimizer后面的信息中可以得出执行该语句时到底用了什么样的优化器。特别的,如果Optimizer=ALL_ROWS| FIRST_ROWS| FIRST_ROWS_n,则使用的是CBO优化器;如果Optimizer=RULE,则使用的是RBO优化器。
cost属性的值是一个在oracle内部用来比较各个执行计划所耗费的代价的值,从而使优化器可以选择最好的执行计划。不同语句的cost值不具有可比性,只能对同一个语句的不同执行计划的cost值进行比较。
[:Q65001] 表明该部分查询是以并行方式运行的。里面的数据表示这个操作是由并行查询的一个slave进程处理的,以便该操作可以区别于串行执行的操作。
[ANALYZED] 表明操作中引用的对象被分析过了,在数据字典中有该对象的统计信息可以供CBO使用。
例2:
假定A、B、C都是不是小表,且在A表上一个组合索引:A(a.col1,a.col2) ,注意a.col1列为索引的引导列。
考虑下面的查询:
select A.col4
from A , B , C
where B.col3 = 10 and A.col1 = B.col1 and A.col2 = C.col2 and C.col3 = 5
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 NESTED LOOPS
4 3 TABLE ACCESS (FULL) OF 'B'
5 3 TABLE ACCESS (BY INDEX ROWID) OF 'A'
6 5 INDEX (RANGE SCAN) OF 'INX_COL12A' (NON-UNIQUE)
7 1 SORT (JOIN)
8 7 TABLE ACCESS (FULL) OF 'C'
Statistics
----------------------------------------------------------
0 recursive calls
8 db block gets
6 consistent gets
0 physical reads
0 redo size
551 bytes sent via SQL*Net to client
430 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
6 rows processed
在表做连接时,只能2个表先做连接,然后将连接后的结果作为一个row source,与剩下的表做连接,在上面的例子中,连接顺序为B与A先连接,然后再与C连接:
B <---> A <---> C
col3=10 col3=5
如果没有执行计划,分析一下,上面的3个表应该拿哪一个作为第一个驱动表?从SQL语句看来,只有B表与C表上有限制条件,所以第一个驱动表应该为这2个表中的一个,到底是哪一个呢?
B表有谓词B.col3 = 10,这样在对B表做全表扫描的时候就将where子句中的限制条件(B.col3 = 10)用上,从而得到一个较小的row source, 所以B表应该作为第一个驱动表。而且这样的话,如果再与A表做关联,可以有效利用A表的索引(因为A表的col1列为leading column)。
当然上面的查询中C表上也有谓词(C.col3 = 5),有人可能认为C表作为第一个驱动表也能获得较好的性能。让我们再来分析一下:如果C表作为第一个驱动表,则能保证驱动表生成很小的row source,但是看看连接条件A.col2 = C.col2,此时就没有机会利用A表的索引,因为A表的col2列不为leading column,这样nested loop的效率很差,从而导致查询的效率很差。所以对于NL连接选择正确的驱动表很重要。
因此上面查询比较好的连接顺序为(B - - > A) - - > C。如果数据库是基于代价的优化器,它会利用计算出的代价来决定合适的驱动表与合适的连接顺序。一般来说,CBO都会选择正确的连接顺序,如果CBO选择了比较差的连接顺序,我们还可以使用ORACLE提供的hints来让CBO采用正确的连接顺序。如下所示:
select /*+ ordered */ A.col4
from B,A,C
where B.col3 = 10
and A.col1 = B.col1
and A.col2 = C.col2
and C.col3 = 5
既然选择正确的驱动表这么重要,那么让我们来看一下执行计划,到底各个表之间是如何关联的,从而得到执行计划中哪个表应该为驱动表:
在执行计划中,需要知道哪个操作是先执行的,哪个操作是后执行的,这对于判断哪个表为驱动表有用处。判断之前,如果对表的访问是通过rowid,且该rowid的值是从索引扫描中得来得,则将该索引扫描先从执行计划中暂时去掉。然后在执行计划剩下的部分中,判断执行顺序的指导原则就是:最右、最上的操作先执行。具体解释如下:
得到去除妨碍判断的索引扫描后的执行计划:
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 NESTED LOOPS
4 3 TABLE ACCESS (FULL) OF 'B'
5 3 TABLE ACCESS (BY INDEX ROWID) OF 'A'
7 1 SORT (JOIN)
8 7 TABLE ACCESS (FULL) OF 'C'
看执行计划的第3列,即字母部分,每列值的左面有空格作为缩进字符。在该列值左边的空格越多,说明该列值的缩进越多,该列值也越靠右。如上面的执行计划所示:第一列值为6的行的缩进最多,即该行最靠右;第一列值为4、5的行的缩进一样,其靠右的程度也一样,但是第一列值为4的行比第一列值为5的行靠上;谈论上下关系时,只对连续的、缩进一致的行有效。
从这个图中我们可以看到,对于NESTED LOOPS部分,最右、最上的操作是TABLE ACCESS (FULL) OF 'B',所以这一操作先执行,所以该操作对应的B表为第一个驱动表(外部表),自然,A表就为内部表了。从图中还可以看出,B与A表做嵌套循环后生成了新的row source ,对该row source进行来排序后,与C表对应的排序了的row source(应用了C.col3 = 5限制条件)进行MSJ连接操作。所以从上面可以得出如下事实:B表先与A表做嵌套循环,然后将生成的row source与C表做排序—合并连接。
通过分析上面的执行计划,我们不能说C表一定在B、A表之后才被读取,事实上,B表有可能与C表同时被读入内存,因为将表中的数据读入内存的操作可能为并行的。事实上许多操作可能为交叉进行的,因为ORACLE读取数据时,如果就是需要一行数据也是将该行所在的整个数据块读入内存,而且还有可能为多块读。
看执行计划时,我们的关键不是看哪个操作先执行,哪个操作后执行,而是关键看表之间连接的顺序(如得知哪个为驱动表,这需要从操作的顺序进行判断)、使用了何种类型的关联及具体的存取路径(如判断是否利用了索引)
在从执行计划中判断出哪个表为驱动表后,根据我们的知识判断该表作为驱动表(就像上面判断ABC表那样)是否合适,如果不合适,对SQL语句进行更改,使优化器可以选择正确的驱动表。
Rowid的概念:
rowid是一个伪列,既然是伪列,那么这个列就不是用户定义,而是系统自己给加上的。对每个表都有一个rowid的伪列,但是表中并不物理存储ROWID列的值。不过你可以像使用其它列那样使用它,但是不能删除改列,也不能对该列的值进行修改、插入。一旦一行数据插入数据库,则rowid在该行的生命周期内是唯一的,即即使该行产生行迁移,行的rowid也不会改变。
为什么使用ROWID
rowid对访问一个表中的给定的行提供了最快的访问方法,通过ROWID可以直接定位
到相应的数据块上,然后将其读到内存。我们创建一个索引时,该索引不但存储索引列的值,而且也存储索引值所对应的行的ROWID,这样我们通过索引快速找到相应行的ROWID后,通过该ROWID,就可以迅速将数据查询出来。这也就是我们使用索引查询时,速度比较快的原因。
在ORACLE8以前的版本中,ROWID由FILE 、BLOCK、ROW NUMBER构成。随着oracle8中对象概念的扩展,ROWID发生了变化,ROWID由OBJECT、FILE、BLOCK、ROW NUMBER构成。利用DBMS_ROWID可以将rowid分解成上述的各部分,也可以将上述的各部分组成一个有效的rowid。
Recursive SQL概念
有时为了执行用户发出的一个sql语句,Oracle必须执行一些额外的语句,我们将这些额外的语句称之为'recursive calls'或'recursive SQL statements'。如当一个DDL语句发出后,ORACLE总是隐含的发出一些recursive SQL语句,来修改数据字典信息,以便用户可以成功的执行该DDL语句。当需要的数据字典信息没有在共享内存中时,经常会发生Recursive calls,这些Recursive calls会将数据字典信息从硬盘读入内存中。用户不比关心这些recursive SQL语句的执行情况,在需要的时候,ORACLE会自动的在内部执行这些语句。当然DML语句与SELECT都可能引起recursive SQL。简单的说,我们可以将触发器视为recursive SQL。
Row Source(行源)
用在查询中,由上一操作返回的符合条件的行的集合,即可以是表的全部行数据的集合;也可以是表的部分行数据的集合;也可以为对上2个row source进行连接操作(如join连接)后得到的行数据集合。
Predicate(谓词)
一个查询中的WHERE限制条件
Driving Table(驱动表)
该表又称为外层表(OUTER TABLE)。这个概念用于嵌套与HASH连接中。如果该row source返回较多的行数据,则对所有的后续操作有负面影响。注意此处虽然翻译为驱动表,但实际上翻译为驱动行源(driving row source)更为确切。一般说来,是应用查询的限制条件后,返回较少行源的表作为驱动表,所以如果一个大表在WHERE条件有有限制条件(如等值限制),则该大表作为驱动表也是合适的,所以并不是只有较小的表可以作为驱动表,正确说法应该为应用查询的限制条件后,返回较少行源的表作为驱动表。在执行计划中,应该为靠上的那个row source,后面会给出具体说明。在我们后面的描述中,一般将该表称为连接操作的row source 1。
Probed Table(被探查表)
该表又称为内层表(INNER TABLE)。在我们从驱动表中得到具体一行的数据后,在该表中寻找符合连接条件的行。所以该表应当为大表(实际上应该为返回较大row source的表)且相应的列上应该有索引。在我们后面的描述中,一般将该表称为连接操作的row source 2。
组合索引(concatenated index)
由多个列构成的索引,如create index idx_emp on emp(col1, col2, col3, ……),则我们称idx_emp索引为组合索引。在组合索引中有一个重要的概念:引导列(leading column),在上面的例子中,col1列为引导列。当我们进行查询时可以使用”where col1 = ? ”,也可以使用”where col1 = ? and col2 = ?”,这样的限制条件都会使用索引,但是”where col2 = ? ”查询就不会使用该索引。所以限制条件中包含先导列时,该限制条件才会使用该组合索引。
可选择性(selectivity):
比较一下列中唯一键的数量和表中的行数,就可以判断该列的可选择性。如果该列的”唯一键的数量/表中的行数”的比值越接近1,则该列的可选择性越高,该列就越适合创建索引,同样索引的可选择性也越高。在可选择性高的列上进行查询时,返回的数据就较少,比较适合使用索引查询。
有了这些背景知识后就开始介绍执行计划。为了执行语句,Oracle可能必须实现许多步骤。这些步骤中的每一步可能是从数据库中物理检索数据行,或者用某种方法准备数据行,供发出语句的用户使用。Oracle用来执行语句的这些步骤的组合被称之为执行计划。执行计划是SQL优化中最为复杂也是最为关键的部分,只有知道了ORACLE在内部到底是如何执行该SQL语句后,我们才能知道优化器选择的执行计划是否为最优的。执行计划对于DBA来说,就象财务报表对于财务人员一样重要。所以我们面临的问题主要是:如何得到执行计划;如何分析执行计划,从而找出影响性能的主要问题。下面先从分析树型执行计划开始介绍,然后介绍如何得到执行计划,再介绍如何分析执行计划。
举例:
这个例子显示关于下面SQL语句的执行计划。
SELECT ename, job, sal, dname
FROM emp, dept
WHERE emp.deptno = derpt.deptno
AND NOT EXISTS
( SELECT *
FROM salgrade
WHERE emp.sal BETWEEN losal AND hisal );
此语句查询薪水不在任何建议薪水范围内的所有雇员的名字,工作,薪水和部门名。
下图5-1显示了一个执行计划的图形表示:
执行计划的步骤
执行计划的每一步返回一组行,它们或者为下一步所使用,或者在最后一步时返回给发出SQL语句的用户或应用。由每一步返回的一组行叫做行源(row source)。图5-1树状图显示了从一步到另一步行数据的流动情况。每步的编号反映了在你观察执行计划时所示步骤的顺序(如何观察执行计划将被简短地说明)。一般来说这并不是每一步被执行的先后顺序。执行计划的每一步或者从数据库中检索行,或者接收来自一个或多个行源的行数据作为输入:
由红色字框指出的步骤从数据库中的数据文件中物理检索数据。这种步骤被称之为存取路径,后面会详细介绍在Oracle可以使用的存取路径:
第3步和第6步分别的从EMP表和SALGRADE表读所有的行。
第5步在PK_DEPTNO索引中查找由步骤3返回的每个DEPTNO值。它找出与DEPT表中相关联的那些行的ROWID。
第4步从DEPT表中检索出ROWID为第5步返回的那些行。
由黑色字框指出的步骤在行源上操作,如做2表之间的关联,排序,或过滤等操作,后面也会给出详细的介绍:
第2步实现嵌套的循环操作(相当于C语句中的嵌套循环),接收从第3步和第4步来的行源,把来自第3步源的每一行与它第4步中相应的行连接在一起,返回结果行到第1步。
第1步完成一个过滤器操作。它接收来自第2步和第6步的行源,消除掉第2步中来的,在第6步有相应行的那些行,并将来自第2步的剩下的行返回给发出语句的用户或应用。
实现执行计划步骤的顺序
执行计划中的步骤不是按照它们编号的顺序来实现的:Oracle首先实现图5-1树结构图形里作为叶子出现的那些步骤(例如步骤3、5、6)。由每一步返回的行称为它下一步骤的行源。然后Oracle实现父步骤。
举例来说,为了执行图5-1中的语句,Oracle以下列顺序实现这些步骤:
首先,Oracle实现步骤3,并一行一行地将结果行返回给第2步。
对第3步返回的每一行,Oracle实现这些步骤:
-- Oracle实现步骤5,并将结果ROWID返回给第4步。
-- Oracle实现步骤4,并将结果行返回给第2步。
-- Oracle实现步骤2,将接受来自第3步的一行和来自第4步的一行,并返回
给第1步一行。
-- Oracle实现步骤6,如果有结果行的话,将它返回给第1步。
-- Oracle实现步骤1,如果从步骤6返回行,Oracle将来自第2步的行返回给
发出SQL语句的用户。
注意Oracle对由第3步返回的每一行实现步骤5,4,2,6一次。许多父步骤在它们能执行之前只需要来自它们子步骤的单一行。对这样的父步骤来说,只要从子步骤已返回单一行时立即实现父步骤(可能还有执行计划的其余部分)。如果该父步骤的父步骤同样可以通过单一行返回激活的话,那么它也同样被执行。所以,执行可以在树上串联上去,可能包含执行计划的余下部分。对于这样的操作,可以使用first_rows作为优化目标以便于实现快速响应用户的请求。
对每个由子步骤依次检索出来的每一行,Oracle就实现父步骤及所有串联在一起的步骤一次。对由子步骤返回的每一行所触发的父步骤包括表存取,索引存取,嵌套的循环连接和过滤器。
有些父步骤在它们被实现之前需要来自子步骤的所有行。对这样的父步骤,直到所有行从子步骤返回之前Oracle不能实现该父步骤。这样的父步骤包括排序,排序一合并的连接,组功能和总计。对于这样的操作,不能使用first_rows作为优化目标,而可以用all_rows作为优化目标,使该中类型的操作耗费的资源最少。
有时语句执行时,并不是象上面说的那样一步一步有先有后的进行,而是可能并行运行,如在实际环境中,3、5、4步可能并行运行,以便取得更好的效率。从上面的树型图上,是很难看出各个操作执行的先后顺序,而通过ORACLE生成的另一种形式的执行计划,则可以很容易的看出哪个操作先执行,哪个后执行,这样的执行计划是我们真正需要的,后面会给出详细说明。现在先来看一些预备知识。