java 多线程阻塞队列 与 阻塞方法与和非阻塞方法

时间:2021-01-22 07:42:05

Queue是什么

队列,是一种数据结构。除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的。无论使用哪种排序方式,队列的头都是调用remove()或poll()移除元素的。在FIFO队列中,所有新元素都插入队列的末尾。队列都是线程安全的,内部已经实现安全措施,不用我们担心

Queue中的方法

Queue中的方法不难理解,6个,每2对是一个也就是总共3对。看一下JDK API就知道了:

java 多线程阻塞队列   与  阻塞方法与和非阻塞方法

注意一点就好,Queue通常不允许插入Null,尽管某些实现(比如LinkedList)是允许的,但是也不建议。


使用非阻塞队列的时候有一个很大问题就是:它不会对当前线程产生阻塞,那么在面对类似消费者-生产者的模型时,就必须额外地实现同步策略以及线程间唤醒策略,这个实现起来就非常麻烦。但是有了阻塞队列就不一样了,它会对当前线程产生阻塞,比如一个线程从一个空的阻塞队列中取元素,此时线程会被阻塞直到阻塞队列中有了元素。当队列中有元素后,被阻塞的线程会自动被唤醒(不需要我们编写代码去唤醒)。这样提供了极大的方便性。

一.几种主要的阻塞队列

 自从Java 1.5之后,在java.util.concurrent包下提供了若干个阻塞队列,主要有以下几个:

  ArrayBlockingQueue:基于数组实现的一个阻塞队列,在创建ArrayBlockingQueue对象时必须制定容量大小。并且可以指定公平性与非公平性,默认情况下为非公平的,即不保证等待时间最长的队列最优先能够访问队列。

  LinkedBlockingQueue:基于链表实现的一个阻塞队列,在创建LinkedBlockingQueue对象时如果不指定容量大小,则默认大小为Integer.MAX_VALUE。

  PriorityBlockingQueue:以上2种队列都是先进先出队列,而PriorityBlockingQueue却不是,它会按照元素的优先级对元素进行排序,按照优先级顺序出队,每次出队的元素都是优先级最高的元素。注意,此阻塞队列为*阻塞队列,即容量没有上限(通过源码就可以知道,它没有容器满的信号标志),前面2种都是有界队列。

  DelayQueue:基于PriorityQueue,一种延时阻塞队列,DelayQueue中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue也是一个*队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作(消费者)才会被阻塞。

二.阻塞队列中的方法 VS 非阻塞队列中的方法
 
1.非阻塞队列中的几个主要方法:
 
  add(E e):将元素e插入到队列末尾,如果插入成功,则返回true;如果插入失败(即队列已满),则会抛出异常;
 
  remove():移除队首元素,若移除成功,则返回true;如果移除失败(队列为空),则会抛出异常;
 
  offer(E e):将元素e插入到队列末尾,如果插入成功,则返回true;如果插入失败(即队列已满),则返回false;
 
  poll():移除并获取队首元素,若成功,则返回队首元素;否则返回null;
 
  peek():获取队首元素,若成功,则返回队首元素;否则返回null
 

  对于非阻塞队列,一般情况下建议使用offer、poll和peek三个方法,不建议使用add和remove方法。因为使用offer、poll和peek三个方法可以通过返回值判断操作成功与否,而使用add和remove方法却不能达到这样的效果。注意,非阻塞队列中的方法都没有进行同步措施。

//在这篇笔记中没有介绍非阻塞队列,大部分阻塞队列都可以有非阻塞方法和阻塞方法
 
2.阻塞队列中的几个主要方法:
 
  阻塞队列包括了非阻塞队列中的大部分方法,上面列举的5个方法在阻塞队列中都存在,但是要注意这5个方法在阻塞队列中都进行了同步措施。除此之外,阻塞队列提供了另外4个非常有用的方法:
 
  put(E e)
 
  take()
 
  offer(E e,long timeout, TimeUnit unit)
 
  poll(long timeout, TimeUnit unit)
 
 
 
  put方法用来向队尾存入元素,如果队列满,则等待;
 
  take方法用来从队首取元素,如果队列为空,则等待;
 
  offer方法用来向队尾存入元素,如果队列满,则等待一定的时间,当时间期限达到时,如果还没有插入成功,则返回false;否则返回true;
 
  poll方法用来从队首取元素,如果队列空,则等待一定的时间,当时间期限达到时,如果取到,则返回null;否则返回取得的元素;

注意:

1、必须要使用take()方法在获取的时候达成阻塞结果
2、使用poll()方法将产生非阻塞效果

三.阻塞队列的实现原理
 
  前面谈到了非阻塞队列和阻塞队列中常用的方法,下面来探讨阻塞队列的实现原理,本文以ArrayBlockingQueue为例,其他阻塞队列实现原理可能和ArrayBlockingQueue有一些差别,但是大体思路应该类似,有兴趣的朋友可自行查看其他阻塞队列的实现源码。
 
  首先看一下ArrayBlockingQueue类中的几个成员变量:

  1. public class ArrayBlockingQueue<E> extends AbstractQueue<E>
  2. implements BlockingQueue<E>, java.io.Serializable {
  3. private static final long serialVersionUID = -817911632652898426L;
  4. /** The queued items */
  5. private final E[] items;
  6. /** items index for next take, poll or remove */
  7. private int takeIndex;
  8. /** items index for next put, offer, or add. */
  9. private int putIndex;
  10. /** Number of items in the queue */
  11. private int count;
  12. /*
  13. * Concurrency control uses the classic two-condition algorithm
  14. * found in any textbook.
  15. */
  16. /** Main lock guarding all access */
  17. private final ReentrantLock lock;
  18. /** Condition for waiting takes */
  19. private final Condition notEmpty;
  20. /** Condition for waiting puts */
  21. private final Condition notFull;
  22. }

可以看出,ArrayBlockingQueue中用来存储元素的实际上是一个数组,takeIndex和putIndex分别表示队首元素和队尾元素的下标,count表示队列中元素的个数。
 
  lock是一个可重入锁,notEmpty和notFull是等待条件。
 
  下面看一下ArrayBlockingQueue的构造器,构造器有三个重载版本:
  1. public ArrayBlockingQueue(int capacity) {
  2. }
  3. public ArrayBlockingQueue(int capacity, boolean fair) {
  4.  
  5. }
  6. public ArrayBlockingQueue(int capacity, boolean fair,
  7.                           Collection<? extends E> c) {
  8. }

  第一个构造器只有一个参数用来指定容量,第二个构造器可以指定容量和公平性,第三个构造器可以指定容量、公平性以及用另外一个集合进行初始化。
 
  然后看它的两个关键方法的实现:put()和take():
 
  1. public void put(E e) throws InterruptedException {
  2.     if (e == null) throw new NullPointerException();
  3.     final E[] items = this.items;
  4.     final ReentrantLock lock = this.lock;
  5.     lock.lockInterruptibly();
  6.     try {
  7.         try {
  8.             while (count == items.length)
  9.                 notFull.await();
  10.         } catch (InterruptedException ie) {
  11.             notFull.signal(); // propagate to non-interrupted thread
  12.             throw ie;
  13.         }
  14.         insert(e);
  15.     } finally {
  16.         lock.unlock();
  17.     }
  18. }

  从put方法的实现可以看出,它先获取了锁,并且获取的是可中断锁,然后判断当前元素个数是否等于数组的长度,如果相等,则调用notFull.await()进行等待,如果捕获到中断异常,则唤醒线程并抛出异常。
 
  当被其他线程唤醒时,通过insert(e)方法插入元素,最后解锁。
 
  我们看一下insert方法的实现:
  1. private void insert(E x) {
  2.     items[putIndex] = x;
  3.     putIndex = inc(putIndex);
  4.     ++count;
  5.     notEmpty.signal();
  6. }

  它是一个private方法,插入成功后,通过notEmpty唤醒正在等待取元素的线程。
 
  下面是take()方法的实现:
 
  1. public E take() throws InterruptedException {
  2.     final ReentrantLock lock = this.lock;
  3.     lock.lockInterruptibly();
  4.     try {
  5.         try {
  6.             while (count == 0)
  7.                 notEmpty.await();
  8.         } catch (InterruptedException ie) {
  9.             notEmpty.signal(); // propagate to non-interrupted thread
  10.             throw ie;
  11.         }
  12.         E x = extract();
  13.         return x;
  14.     } finally {
  15.         lock.unlock();
  16.     }
  17. }

  跟put方法实现很类似,只不过put方法等待的是notFull信号,而take方法等待的是notEmpty信号。在take方法中,如果可以取元素,则通过extract方法取得元素,下面是extract方法的实现:
  1. private E extract() {
  2.     final E[] items = this.items;
  3.     E x = items[takeIndex];
  4.     items[takeIndex] = null;
  5.     takeIndex = inc(takeIndex);
  6.     --count;
  7.     notFull.signal();
  8.     return x;
  9. }

  跟insert方法也很类似。
 
  其实从这里大家应该明白了阻塞队列的实现原理,事实它和我们用Object.wait()、Object.notify()和非阻塞队列实现生产者-消费者的思路类似,只不过它把这些工作一起集成到了阻塞队列中实现。


四.示例和使用场景
 
  下面先使用Object.wait()和Object.notify()、非阻塞队列实现生产者-消费者模式:
 
  1. public class Test {
  2.     private int queueSize = 10;
  3.     private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize);
  4.  
  5.     public static void main(String[] args)  {
  6.         Test test = new Test();
  7.         Producer producer = test.new Producer();
  8.         Consumer consumer = test.new Consumer();
  9.  
  10.         producer.start();
  11.         consumer.start();
  12.     }
  13.  
  14.     class Consumer extends Thread{
  15.  
  16.         @Override
  17.         public void run() {
  18.             consume();
  19.         }
  20.  
  21.         private void consume() {
  22.             while(true){
  23.                 synchronized (queue) {
  24.                     while(queue.size() == 0){
  25.                         try {
  26.                             System.out.println("队列空,等待数据");
  27.                             queue.wait();
  28.                         } catch (InterruptedException e) {
  29.                             e.printStackTrace();
  30.                             queue.notify();
  31.                         }
  32.                     }
  33.                     queue.poll();          //每次移走队首元素
  34.                     queue.notify();
  35.                     System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素");
  36.                 }
  37.             }
  38.         }
  39.     }
  40.  
  41.     class Producer extends Thread{
  42.  
  43.         @Override
  44.         public void run() {
  45.             produce();
  46.         }
  47.  
  48.         private void produce() {
  49.             while(true){
  50.                 synchronized (queue) {
  51.                     while(queue.size() == queueSize){
  52.                         try {
  53.                             System.out.println("队列满,等待有空余空间");
  54.                             queue.wait();
  55.                         } catch (InterruptedException e) {
  56.                             e.printStackTrace();
  57.                             queue.notify();
  58.                         }
  59.                     }
  60.                     queue.offer(1);        //每次插入一个元素
  61.                     queue.notify();
  62.                     System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size()));
  63.                 }
  64.             }
  65.         }
  66.     }
  67. }

  这个是经典的生产者-消费者模式,通过阻塞队列和Object.wait()和Object.notify()实现,wait()和notify()主要用来实现线程间通信。
 
  具体的线程间通信方式(wait和notify的使用)在后续问章中会讲述到。
 
  下面是使用阻塞队列实现的生产者-消费者模式:

  1. public class Test {
  2. private int queueSize = 10;
  3. private ArrayBlockingQueue<Integer> queue = new ArrayBlockingQueue<Integer>(queueSize);
  4. public static void main(String[] args) {
  5. Test test = new Test();
  6. Producer producer = test.new Producer();
  7. Consumer consumer = test.new Consumer();
  8. producer.start();
  9. consumer.start();
  10. }
  11. class Consumer extends Thread{
  12. @Override
  13. public void run() {
  14. consume();
  15. }
  16. private void consume() {
  17. while(true){
  18. try {
  19. queue.take();
  20. System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素");
  21. } catch (InterruptedException e) {
  22. e.printStackTrace();
  23. }
  24. }
  25. }
  26. }
  27. class Producer extends Thread{
  28. @Override
  29. public void run() {
  30. produce();
  31. }
  32. private void produce() {
  33. while(true){
  34. try {
  35. queue.put(1);
  36. System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size()));
  37. } catch (InterruptedException e) {
  38. e.printStackTrace();
  39. }
  40. }
  41. }
  42. }
  43. }


 有没有发现,使用阻塞队列代码要简单得多,不需要再单独考虑同步和线程间通信的问题。
 
  在并发编程中,一般推荐使用阻塞队列,这样实现可以尽量地避免程序出现意外的错误。
 
  阻塞队列使用最经典的场景就是socket客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。还有其他类似的场景,只要符合生产者-消费者模型的都可以使用阻塞队列。